Australian New Crops Info 2016
Supported by the Rural Industries Research and Development Corporation

Listing of Interesting Plants of the World:

Nardia scalaris

 

 

This species is usually known as:

Nardia scalaris, Nardia scalaris subsp. harae

 

This species has also been known as:

Nardia scalaris subsp. scalaris

 

Common names:

Ladder Flapwort

 

 

Trends (five databases) 1901-2013:
[Number of papers mentioning Nardia scalaris: 30]

 

 

Popularity of Nardia scalaris over time
[Left-hand Plot: Plot of numbers of papers mentioning Nardia scalaris (histogram and left hand axis scale of left-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box); Right-hand Plot: Plot of a proportional micro index, derived from numbers of papers mentioning Nardia scalaris as a proportion (scaled by multiplying by one million) of the approximate total number of papers available in databases for that year (frequency polygon and left-hand axis scale of right-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box)] 

[For larger charts showing the numbers of papers that have mentioned this species over years, select this link; there are links to come back from there]

 

Keywords

[Total number of keywords included in the papers that mentioned this species: 111]

 

bryophytes (3), Fungi (3), Hepaticae (3), liverworts (3), Red-listed species (3), Bark pH (2), Cloud forest (2), Global change (2), Habitat restoration (2), indicator species (2), Island ecology (2), Jungermanniales (2), kauranes (2), labdanes (2), lichens (2), Macaronesia (2), Nardia scalaris (2), Retention trees (2), Species distribution (2), Wood decay (2), (+)-3-oxo-21α-methoxyserrat-14-ene. (1), 13 C-NMR (1), 1H and 13C NMR parameters (1), 1H-NMR (1), 9,10-dihydrophenanthrenes (1), Algae (1), Aromatic compounds (1), bark (1), bibenzyls (1), Biskopstorp (1), Bryopsida (1), Cell culture (1), chemotaxonomy (1), chemotaxonomy. (1), Conservation (1), Dendrochronology (1), derivatives (1), Diterpenoid (1), diterpenoids (1), divergence times (1), ent-Kaurane (1), environment (1), Fagus sylvatica (1), forest conservation (1), GC-MS (1), group II introns (1), Hepaticopsida (1), Hydrangea macrophylla (1), isolation (1), Jungermannia subulata (1), land plants (1), Liverwort (1), lunularic acid (1), lunularin (1), malonates. (1), management (1), Marchantiophyta (1), Marchantiopsida (1), mass spectra (1), mitochondria (1), models (1), molecular clock (1), molecular phylogeny (1), mosses and liverworts (1), Nardia succulenta, N. scalaris (1), National Vegetation Classification (1), natural distribution. (1), NMR fingerprinting (1), Non-Parametric Multivariate Analysis (1), pentacyclic triterpenes (1), phylogeny (1), Pinus monticola (1), Plagiochila spinulosa (1), plant species (1), Saxifragaceae (1), Serratane (1), stilbenes (1), structure (1), structure elucidation (1), Substrate Quality (1), Sweden (1), tetracyclic triterpenes (1), triterpenes (1), Triterpenoids (1), vascular plants (1), western white pine (1)

 

[If all keywords are not here (as indicated by .....), they can be accessed from this link; there are links to come back from there]

 

 

Most likely scope for crop use/product (%):
[Please note: When there are only a few papers mentioning a species, care should be taken with the interpretation of these crop use/product results; as well, a mention may relate to the use of a species, or the context in which it grows, rather than a product]

 

timber (53.96), ornamental (19.63), medicinal (3.57), essential oil (2.85), fruit (2.61), poison (2.59), oilseed/fat (1.35), cereal (0.83), nutraceutical (0.82), grain legume (0.82)…..

 

[To see the full list of crop use/product outcomes, from searching abstracts of the papers that have mentioned this species, select this link; details of the analysis process have also been included; there are links to come back from there]

 

 

Recent mentions of this species in the literature:
[since 2012, with links to abstracts; The references from 1901-2013 which have been used for the trend, keyword and crop use/product analyses below, are listed below these references]

 

Dey A and Mukherjee A (2015) Therapeutic potential of bryophytes and derived compounds against cancer. Journal of Acute Disease 4, 236-248. //www.sciencedirect.com/science/article/pii/S2221618915000372

Le Milbeau C, Lavrieux M, Jacob J, Bréheret J-G, Zocatelli R and Disnar J-R (2013) Methoxy-serratenes in a soil under conifers and their potential use as biomarkers of Pinaceae. Organic Geochemistry 55, 45-54. //www.sciencedirect.com/science/article/pii/S0146638012002471

Cooper ED, Henwood MJ and Brown EA (2012) Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biological Journal of the Linnean Society 107, 425-441. http://dx.doi.org/10.1111/j.1095-8312.2012.01946.x

Volkmar U, Groth-Malonek M, Heinrichs J, Muhle H, Polsakiewicz M and Knoop V (2012) Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade. Plant Biology 14, 382-391. http://dx.doi.org/10.1111/j.1438-8677.2011.00499.x

 

 

References 1901-2013 (and links to abstracts):
[Number of papers mentioning Nardia scalaris: 30; Any undated papers have been included at the end]

 

Cooper ED, Henwood MJ and Brown EA (2012) Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biological Journal of the Linnean Society 107, 425-441.  http://dx.doi.org/10.1111/j.1095-8312.2012.01946.x

Volkmar U, Groth-Malonek M, Heinrichs J, Muhle H, Polsakiewicz M and Knoop V (2012) Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade. Plant Biology 14, 382-391.  http://dx.doi.org/10.1111/j.1438-8677.2011.00499.x

Lloret F and González-Mancebo JM (2011) Altitudinal distribution patterns of bryophytes in the Canary Islands and vulnerability to climate change. Flora - Morphology, Distribution, Functional Ecology of Plants 206, 769-781.  http://www.sciencedirect.com/science/article/pii/S0367253011000764

Wickett NJ, Forrest LL, Budke JM, Shaw B and Goffinet B (2011) Frequent pseudogenization and loss of the plastid-encoded sulfate-transport gene cysA throughout the evolution of liverworts. Am. J. Botany 98, 1263-1275.  http://www.amjbot.org/cgi/content/abstract/98/8/1263

Bidartondo MI and Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc B 277, 485-492.  http://rspb.royalsocietypublishing.org/cgi/content/abstract/277/1680/485

Fritz Ö and Heilmann-Clausen J (2010) Rot holes create key microhabitats for epiphytic lichens and bryophytes on beech (Fagus sylvatica). Biological Conservation 143, 1008-1016.  http://www.sciencedirect.com/science/article/pii/S0006320710000170

Fritz Ö, Niklasson M and Churski M (2009) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Applied Vegetation Science 12, 93-106.  http://dx.doi.org/10.1111/j.1654-109X.2009.01007.x

Davis EC and Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am. J. Botany 95, 914-924.  http://www.amjbot.org/cgi/content/abstract/95/8/914

Rudinger M, Polsakiewicz M and Knoop V (2008) Organellar RNA Editing and Plant-Specific Extensions of Pentatricopeptide Repeat Proteins in Jungermanniid but not in Marchantiid Liverworts. Mol. Biol. Evol. 25, 1405-1414.  http://mbe.oxfordjournals.org/cgi/content/abstract/25/7/1405

Sćtersdal M, Gjerde I and Blom HH (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biological Conservation 122, 305-316.  http://www.sciencedirect.com/science/article/pii/S0006320704003490

Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F and Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycological Research 107, 957-968.  http://www.sciencedirect.com/science/article/pii/S0953756208612873

Popper ZA and Fry SC (2003) Primary Cell Wall Composition of Bryophytes and Charophytes. Ann. Bot. 91, 1-12.  http://aob.oxfordjournals.org/cgi/content/abstract/91/1/1

Oliván G, Fuertes E and Acón M (2001) Flora briológica de la Sierra de Peńa Sagra (Cantabria, Espańa). Cryptogamie Bryologie 22, 129-144.  http://www.sciencedirect.com/science/article/pii/S1290079601010562

Vanderpoorten A, Sotiaux A and Sotiaux O (2001) Integrating bryophytes into a forest management plan: lessons from grid-mapping in the forest of Soignes (Belgium). Cryptogamie Bryologie 22, 217-230.  http://www.sciencedirect.com/science/article/pii/S1290079601900069

Connolly JD, Rycroft DS, et al. (1999) Aromatic compounds from the liverwort Plagiochila spinulosa. Phytochemistry 50, 1159-1165.  http://www.sciencedirect.com/science/article/pii/S0031942298006657

Nagashima F, Suzuki M, Takaoka S and Asakawa Y (1999) New acorane- and cuparane-type sesqui- and new labdane- and seco-labdanne-type diterpenoids from the Japanese liverwort Jungermannia infusca (Mitt.) Steph. Tetrahedron 55, 9117-9132.  http://www.sciencedirect.com/science/article/pii/S0040402099004767

Tazaki H, Iwasaki T, Nakasuga I, Kobayashi K, Koshino H, Tanaka M and Nabeta K (1999) ent-Kaurane-type diterpenoids produced by cell culture of the liverwort Jungermannia subulata. Phytochemistry 52, 1427-1430.  http://www.sciencedirect.com/science/article/pii/S0031942299003477

Ohlson M, Söderström L, Hörnberg G, Zackrisson O and Hermansson J (1997) Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biological Conservation 81, 221-231.  http://www.sciencedirect.com/science/article/pii/S0006320797000013

Sanderson RA, Rushton SP, Pickering AT and Byrne JP (1995) A preliminary method of predicting plant species distributions using the British National Vegetation Classification. Journal of Environmental Management 43, 265-288.  http://www.sciencedirect.com/science/article/pii/S0301479795904263

Langenbah U, Burkhardt G and Becker H (1993) Diterpene malonates and other terpenes from Nardia succulenta and N. scalaris. Phytochemistry. 33, 1173-1179.

Langenbahn U, Burkhardt G and Becker H (1993) Diterpene malonates and other terpenes from Nardia succulenta and N. scalaris. Phytochemistry 33, 1173-1179.  http://www.sciencedirect.com/science/article/pii/003194229385044R

Ferrier RC, McMahon RG, Walker TAB, Harriman R, Edwards AC and King D (1992) Experimental stream acidification — the influence of sediment and streambed vegetation. Journal of Hydrology 140, 361-370.  http://www.sciencedirect.com/science/article/pii/002216949290248T

Conner AH, Nagasampagi BA and Rowe JW (1984) New serratane triterpenes from western white pine bark. Tetrahedron 40, 4217-4226.  http://www.sciencedirect.com/science/article/pii/S0040402001987964

Das MC and Mahato SB (1983) Triterpenoids. Phytochemistry 22, 1071-1095.  http://www.sciencedirect.com/science/article/pii/0031942283801988

Benes I, Vanek T, Budesinsky M and Herout V (1981) A triterpenoid of the serratane type from the liverwort Nardia scalaris. Phytochemistry., 11.

Benes̆ I, Vanĕk T, Budĕs̆ínský M and Herout V (1981) A triterpenoid of the serratane type from the liverwort Nardia scalaris. Phytochemistry 20, 2591-2592.  http://www.sciencedirect.com/science/article/pii/0031942281831044

A.J.E S (1979) Cytogenetics, Biosystematics and Evolution in the Bryophyta. In ‘Advances in Botanical Research’ (Ed.^(Eds Woolhouse HW) pp. 195-276. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065229608603316

Merry DG and Slater FM (1978) Plant colonisation under abnormally dry conditions of some reservoir margins in mid-wales. Aquatic Botany 5, 149-162.  http://www.sciencedirect.com/science/article/pii/030437707890058X

John G (1977) Lunularic acid and related compounds in liverworts, algae and Hydrangea. Phytochemistry 16, 249-253.  http://www.sciencedirect.com/science/article/pii/S0031942200867953

Huneck S and Klein E (1967) Inhaltsstoffe der moose—III. : Über die vergleichende gas- und dünnschicht-chromatographische untersuchung der ätherischen öle einiger lebermoose und die isolierung von (−)-longifolen und (−)-longiborneol aus Scapania undulata (L.) Dum. Phytochemistry 6, 383-390.  http://www.sciencedirect.com/science/article/pii/S0031942200862950

Bidartondo MI and Duckett JG Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc B 277, 485-492.  http://rspb.royalsocietypublishing.org/cgi/content/abstract/277/1680/485

Fritz Ăr and Heilmann-Clausen J Rot holes create key microhabitats for epiphytic lichens and bryophytes on beech (Fagus sylvatica). Biological Conservation 143, 1008-1016.  http://www.sciencedirect.com/science/article/pii/S0006320710000170

Le Milbeau C, Lavrieux Mn, Jacob Jrm, BrÉheret J-G, Zocatelli R and Disnar J-R Methoxy-serratenes in a soil under conifers and their potential use as biomarkers of Pinaceae. Organic Geochemistry 55, 45-54.  http://www.sciencedirect.com/science/article/pii/S0146638012002471

Lloret F and GonzÁlez-Mancebo JMa Altitudinal distribution patterns of bryophytes in the Canary Islands and vulnerability to climate change. Flora - Morphology, Distribution, Functional Ecology of Plants 206, 769-781.  http://www.sciencedirect.com/science/article/pii/S0367253011000764

Wickett NJ, Forrest LL, Budke JM, Shaw B and Goffinet B Frequent pseudogenization and loss of the plastid-encoded sulfate-transport gene cysA throughout the evolution of liverworts. Am. J. Botany 98, 1263-1275.  http://www.amjbot.org/cgi/content/abstract/98/8/1263

 


RIRDC Farm Diversity Website: http://www.farmdiversity.com.au/

 

Rural Industries Research and Development Corporation (RIRDC)
Home Page

RIRDC New and Developing Plant Industries
Home Page

includes publications and project reports

RIRDC New Crop Industries Handbook
530 pages
as pdf download


RIRDC
essential oils, tea tree oil, wildflowers and natives, bioenergy, organic farming


Grateful acknowledgment is made to the following: for plant names: Australian Plant Name Index, Australian National Herbarium http://www.anbg.gov.au/cpbr/databases/apni-search-full.html; ; The International Plant Names Index, Royal Botanic Gardens, Kew/Harvard University Herbaria/Australian National Herbarium http://www.ipni.org/index.html; Plants Database, United States Department of Agriculture, National Resources Conservation Service http://plants.usda.gov/;DJ Mabberley (1997) The Plant Book, Cambridge University Press (Second Edition); JH Wiersma and B Leon (1999) World Economic Plants, CRC Press; RJ Hnatiuk (1990) Census of Australian Vascular Plants, Australian Government Publishing Service; for information: Science Direct http://www.sciencedirect.com/; Wiley Online Library http://onlinelibrary.wiley.com/advanced/search; High Wire http://highwire.stanford.edu/cgi/search; Oxford Journals http://services.oxfordjournals.org/search.dtl; USDA National Agricultural Library http://agricola.nal.usda.gov/booleancube/booleancube_search_cit.html; for synonyms: The Plant List http://www.theplantlist.org/; for common names: http://en.wikipedia.org/wiki/Main_Page; etc.


All information is included in good faith but this website does not warrant or guarantee the accuracy of any information on these pages, nor does the website accept responsibility for any loss arising from the use of this information.  Views and opinions are those of the authors themselves.  Every effort has been made to respect copyright owners' rights. 


Contact: Webmaster, Australian New Crops Website
australiannewcrops@gmail.com
Latest update March 2017 by: ANCW