Australian New Crops Info 2016
Supported by the Rural Industries Research and Development Corporation

Listing of Interesting Plants of the World:

Neptunia plena

 

 

This species is usually known as:

Neptunia plena

 

This species has also been known as:

Acacia lycopodioides, Acacia punctata, Desmanthus comosus, Desmanthus plenus, Desmanthus polyphyllus, Desmanthus punctatus, Mimosa adenanthera, Mimosa adenanthera, Mimosa lycopodioides, Mimosa plena, Mimosa punctata, Neptunia polyphylla, Neptunia surinamensis

 

Common names:

Water Dead And Awake, Dead, Awake

 

 

Trends (five databases) 1901-2013:
[Number of papers mentioning Neptunia plena: 49]

 

 

Popularity of Neptunia plena over time
[Left-hand Plot: Plot of numbers of papers mentioning Neptunia plena (histogram and left hand axis scale of left-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box); Right-hand Plot: Plot of a proportional micro index, derived from numbers of papers mentioning Neptunia plena as a proportion (scaled by multiplying by one million) of the approximate total number of papers available in databases for that year (frequency polygon and left-hand axis scale of right-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box)] 

[For larger charts showing the numbers of papers that have mentioned this species over years, select this link; there are links to come back from there]

 

Keywords

[Total number of keywords included in the papers that mentioned this species: 144]

 

15N (1), Nitrogen fixation (5), Rhizobium (4), Bradyrhizobium (3), Legume (3), Symbiosis (3), AFLP (2), Aquatic weed (2), Azorhizobium (2), Biological control of weeds (2), Cryptic plasmids (2), Intercellular invasion (2), Invasive plants (2), legumes (2), Parasitism (2), Phaseolus vulgaris (2), Phylogeny (2), Plasmid loss (2), Symbioses (2), Woody weed (2), Zornia glochidiata (2), abiotic stress (1), actinorhiza (1), aerenchyma (1), Agrobacterium tumefaciens strain 82.139 (1), aluminium (1), Arachis hypogaea (1), auxins and cytokinins, and auxin transport - auxin/cytokinin ratio, nodule formation (1), bacterial diversity (1), Biological control (1), biological nitrogen fixation, and nitrogenase biology - BNF, reduction of inert atmospheric nitrogen into ammonia (1), caatinga (1), calcium spiking (1), catclaw mimosa (1), chemosystematics. (1), classical biocontrol (1), Crack entry (1), cyanide (1), cyanogenic compounds (1), endemic (1), ethylene (1), Flooding (1), forestry (1), Frankia (1), functional genomic SSHs/symbiotic cDNA libraries, EST collections (1), Galápagos Islands (1), genetic and genomic approaches, deciphering - symbiotic signaling mechanisms (1), Glutamine (1), grazing (1), Groundnut (1), herbivory (1), host specificity (1), hydrogen cyanide (1), hypocotyl (1), Intercellular spreading (1), jasmonic acid (JA), or methyl jasmonate - negative regulator of nodulation, affecting signaling (1), lateral root (1), lateral root base nodulation (1), lectin ecto-apyrases (LNPs), proteins - binding to Nod factors, high affinity (1), legume root development and nodule organogenesis (1), legume root genomics under symbiosis, model legumes Medicago/Lotus (1), legume roots and nitrogen-fixing symbiotic interactions (1), legumes and nitrogen fixation - evolutionary perspectives and applications (1), legumes from secondary/lateral roots and nitrogen-fixing nodules (1), Leguminosae (1), Melilotus siculus (1), micropropagation (1), Mimosa pigra, Carmenta mimosa (1), Mimosaceae (1), NF signaling pathway, mutants and defects in nodulation (1), Nitrogenase (1), nitrogen-fixing nodule (1), Nod factor (1), nodule formation, mutual interaction with Rhizobiaceae Family (1), Nodule organogenesis (1), nodule organogenesis and rhizobial invasion, the Nod factors (1), nodule organogenesis, and Nod factors - rhizobial infection and invasion (1), nodules (1), nodulin (1), non-protein amino acids (1), nonsustainable practices, and soil quality deterioration - and nitrogen fertilizers (1), Peanut (1), phellem (1), phosphorus (1), photoperiodism (1), phytohormones (1), plant anatomy (1), plant biochemistry (1), plant morphology (1), plant physiology (1), plant regeneration (1), Polyphasic taxonomy (1), radial oxygen loss (1), rhizobia bioinoculants - and Nod factor application (1), Rhizobium gallicum (1), Rhizobium tropici (1), root hair deformation (1), root hair invasion (1), root morphology changes, and other hypernodulating mutants (1), root nodule (1), roots (1), screening (1), secondary aerenchyma (1), secondary metabolites (1), secretory structures (1), seeds (1), Sesbania rostrata (1), shading (1), shared pathways, of root and nodule organogeneses (1), soil fertility, major limiting factor - for crop production, in countries (1), symbiotic nitrogen fixation (1), tropical legumes (1), waterlogging (1), waterlogging tolerance (1), Waterlogging, Trifolium, aerenchyma, hypoxia, flooding, root respiration, clover, root anatomy, root porosity, pasture, aerotropic roots (1), Xylem sap (1)

 

[If all keywords are not here (as indicated by .....), they can be accessed from this link; there are links to come back from there]

 

 

Most likely scope for crop use/product (%):
[Please note: When there are only a few papers mentioning a species, care should be taken with the interpretation of these crop use/product results; as well, a mention may relate to the use of a species, or the context in which it grows, rather than a product]

 

soil amelioration (57.68), grain legume (30.08), hemiparasite (3.86), medicinal (1.19), honey (1.12), fruit (0.86), ornamental (0.55), aquatic (0.41), dye (0.35), nutraceutical (0.27)…..

 

[To see the full list of crop use/product outcomes, from searching abstracts of the papers that have mentioned this species, select this link; details of the analysis process have also been included; there are links to come back from there]

 

 

Recent mentions of this species in the literature:
[since 2012, with links to abstracts; The references from 1901-2013 which have been used for the trend, keyword and crop use/product analyses below, are listed below these references]

 

Ibanez F, Wall L and Fabra A (2016) Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. J. Exp. Bot., erw387. http://jxb.oxfordjournals.org/cgi/content/abstract/erw387v1

Striker GG and Colmer TD (2016) Flooding tolerance of forage legumes. J. Exp. Bot., erw239. http://jxb.oxfordjournals.org/cgi/content/abstract/erw239v1

Tan MK and Tan HTW (2016) Between florivory and herbivory: inefficacy of decision-making by generalist floriphilic katydids. Ecological Entomology, n/a-n/a. http://dx.doi.org/10.1111/een.12369

Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87, 559-902. //www.sciencedirect.com/science/article/pii/S1870345316300707

Ortiz-Díaz JJ, Tún-Garrido J, García-Gil G and Arnelas-Seco I (2014) Flora fanerogámica de dos enclaves de sabana de la península de Yucatán, México. Revista Mexicana de Biodiversidad 85, 665-676. //www.sciencedirect.com/science/article/pii/S1870345314701733

Bomfeti CA, Ferreira PAA, Carvalho TS, De Rycke R, Moreira FMS, Goormachtig S and Holsters M (2013) Nodule development on the tropical legume Sesbania virgata under flooded and non-flooded conditions. Plant Biology 15, 93-98. http://dx.doi.org/10.1111/j.1438-8677.2012.00592.x

Chaintreuil C, Arrighi J-F, Giraud E, Miché L, Moulin L, Dreyfus B, Munive-Hernández J-A, Villegas-Hernandez MdC and Béna G (2013) Evolution of symbiosis in the legume genus Aeschynomene. New Phytologist 200, 1247-1259. http://dx.doi.org/10.1111/nph.12424

Barreto EF, Straliotto R and Baldani JI (2012) Curing of a non-symbiotic plasmid of the Rhizobium tropici strain CIAT 899 affected nodule occupancy and competitiveness of the bacteria in symbiosis with common beans. European Journal of Soil Biology 50, 91-96. http://www.sciencedirect.com/science/article/pii/S116455631100135X

Bomfeti CA, Ferreira PAA, Carvalho TS, De Rycke R, Moreira FMS, Goormachtig S and Holsters M (2012) Nodule development on the tropical legume Sesbania virgata under flooded and non-flooded conditions. Plant Biology, no-no. http://dx.doi.org/10.1111/j.1438-8677.2012.00592.x

Laporte P, Niebel A and Frugier F (2012) Legume Roots and Nitrogen-Fixing Symbiotic Interactions. In ‘Root Genomics and Soil Interactions’ (Ed.^(Eds  pp. 145-170. (Blackwell Publishing Ltd.). http://dx.doi.org/10.1002/9781118447093.ch8

 

 

References 1901-2013 (and links to abstracts):
[Number of papers mentioning Neptunia plena: 49; Any undated papers have been included at the end]

 

Barreto EF, Straliotto R and Baldani JI (2012) Curing of a non-symbiotic plasmid of the Rhizobium tropici strain CIAT 899 affected nodule occupancy and competitiveness of the bacteria in symbiosis with common beans. European Journal of Soil Biology 50, 91-96.  http://www.sciencedirect.com/science/article/pii/S116455631100135X

Bomfeti CA, Ferreira PAA, Carvalho TS, De Rycke R, Moreira FMS, Goormachtig S and Holsters M (2012) Nodule development on the tropical legume Sesbania virgata under flooded and non-flooded conditions. Plant Biology, no-no.  http://dx.doi.org/10.1111/j.1438-8677.2012.00592.x

Laporte P, Niebel A and Frugier F (2012) Legume Roots and Nitrogen-Fixing Symbiotic Interactions. In ‘Root Genomics and Soil Interactions’ (Ed.^(Eds  pp. 145-170. (Blackwell Publishing Ltd.). http://dx.doi.org/10.1002/9781118447093.ch8

Teakle NL, Armstrong J, Barrett-Lennard EG and Colmer TD (2011) Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus. New Phytologist 190, 340-350.  http://dx.doi.org/10.1111/j.1469-8137.2011.03655.x

Valverde A, Velazquez E, Cervantes E, Igual JM and van Berkum P (2011) Evidence of an American Origin for Symbiosis-Related Genes in Rhizobium lusitanum. Appl. Envir. Microbiol. 77, 5665-5670.  http://aem.asm.org/cgi/content/abstract/77/16/5665

Venkateshwaran M and Ané J-M (2011) Legumes and Nitrogen Fixation: Physiological, Molecular, Evolutionary Perspectives, and Applications. In ‘The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops’ (Ed.^(Eds  pp. 457-489. (Wiley-Blackwell). http://dx.doi.org/10.1002/9780470960707.ch20

Capoen W, Oldroyd G, Goormachtig S and Holsters M (2010) Sesbania rostrata: a case study of natural variation in legume nodulation. New Phytologist 186, 340-345.  http://dx.doi.org/10.1111/j.1469-8137.2009.03124.x

Heard TA, Elliott LP, et al. (2010) Biology, host specificity, release and establishment of Macaria pallidata and Leuciris fimbriaria (Lepidoptera: Geometridae), biological control agents of the weed Mimosa pigra. Biological Control 55, 248-255.  http://www.sciencedirect.com/science/article/pii/S1049964410001763

Melo Y, Machado SR and Alves M (2010) Anatomy of extrafloral nectaries in Fabaceae from dry-seasonal forest in Brazil. Botanical Journal of the Linnean Society 163, 87-98.  http://dx.doi.org/10.1111/j.1095-8339.2010.01047.x

Gonzalez-Rizzo S, Laporte P, Crespi M and Frugier F (2009) Legume Root Architecture: A Peculiar Root System. In ‘Annual Plant Reviews Volume 37: Root Development’ (Ed.^(Eds  pp. 239-287. (Wiley-Blackwell). http://dx.doi.org/10.1002/9781444310023.ch10

Gueye F, Moulin L, Sylla S, Ndoye I and BÉna G (2009) Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal. Systematic and Applied Microbiology 32, 387-399.  http://www.sciencedirect.com/science/article/pii/S0723202009000496

Gueye F, Moulin L, Sylla S, Ndoye I and Béna G (2009) Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal. Systematic and Applied Microbiology 32, 387-399.  http://www.sciencedirect.com/science/article/pii/S0723202009000496

Sprent JI (2008) 60Ma of legume nodulation. What’s new? What’s changing? J. Exp. Bot. 59, 1081-1084.  http://jxb.oxfordjournals.org/cgi/content/abstract/59/5/1081

Chou Y-J, Elliott GN, James EK, Lin K-Y, Chou J-H, Sheu S-Y, Sheu D-S, Sprent JI and Chen W-M (2007) Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. Int J Syst Evol Microbiol 57, 577-581.  http://ijs.sgmjournals.org/cgi/content/abstract/57/3/577

Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am. J. Botany 93, 1466-1476.  http://www.amjbot.org/cgi/content/abstract/93/10/1466

Karas B, Murray J, Gorzelak M, Smith A, Sato S, Tabata S and Szczyglowski K (2005) Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti Involves the Nodulation Factor-Dependent Induction of Root Hairs. Plant Physiology 137, 1331-1344.  http://www.plantphysiol.org/cgi/content/abstract/137/4/1331

Goormachtig S, Capoen W and Holsters M (2004) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends in Plant Science 9, 518-522.  http://www.sciencedirect.com/science/article/pii/S1360138504002249

Goormachtig S, Capoen W, James EK and Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. PNAS 101, 6303-6308.  http://www.pnas.org/cgi/content/abstract/101/16/6303

Menneer JC, Ledgard S, McLay C and Silvester W (2004) The Impact of Grazing Animals on N2 Fixation in Legume-Based Pastures and Management Options for Improvement. In ‘Advances in Agronomy’ (Ed.^(Eds  pp. 181-241. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065211304830049

Zurdo-Piñeiro JL, Velázquez E, Lorite MJ, Brelles-Mariño G, Schröder EC, Bedmar EJ, Mateos PF and Martínez-Molina E (2004) Identification of Fast-Growing Rhizobia Nodulating Tropical Legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Systematic and Applied Microbiology 27, 469-477.  http://www.sciencedirect.com/science/article/pii/S0723202004702842

Wagner P, Furstner R, Barthlott W and Neinhuis C (2003) Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exp. Bot. 54, 1295-1303.  http://jxb.oxfordjournals.org/cgi/content/abstract/54/385/1295

Jaffe MJ, Leopold AC and Staples RC (2002) Thigmo responses in plants and fungi. Am. J. Botany 89, 375-382.  http://www.amjbot.org/cgi/content/abstract/89/3/375

Gibberd MR, Gray JD, Cocks PS and Colmer TD (2001) Waterlogging Tolerance Among a Diverse Range of Trifolium Accessions is Related to Root Porosity, Lateral Root Formation and ‘Aerotropic Rooting’. Annals of Botany 88, 579-589.  http://www.sciencedirect.com/science/article/pii/S0305736401915069

Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC and Gasson PE (2001) The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am. J. Botany 88, 503-533.  http://www.amjbot.org/cgi/content/abstract/88/3/503

Janet I S (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspectives in Plant Ecology, Evolution and Systematics 2, 149-162.  http://www.sciencedirect.com/science/article/pii/S1433831904700219

Gonzalez EM, Aparicio-Tejo PM, Gordon AJ, Minchin FR, Royuela M and Arrese-Igor C (1998) Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J. Exp. Bot. 49, 1705-1714.  http://jxb.oxfordjournals.org/cgi/content/abstract/49/327/1705

James EK and Crawford RMM (1998) Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. J. Exp. Bot. 49, 599-609.  http://jxb.oxfordjournals.org/cgi/content/abstract/49/320/599

Boogerd FC and van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiology Reviews 21, 5-27.  http://www.sciencedirect.com/science/article/pii/S0168644597000041

M M (1996) Rapid, Long-distance Signal Transmission in Higher Plants. In ‘Advances in Botanical Research’ (Ed.^(Eds Callow JA) pp. 163-228. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065229608600580

Pawlowski K, Ribeiro A and Bisseling T (1996) Nitrogen Fixing Root Nodule Symbioses: Legume Nodules and Actinorhizal Nodules. In ‘Biotechnology Annual Review’ (Ed.^(Eds El-Gewely MR) pp. 151-184. (Elsevier). http://www.sciencedirect.com/science/article/pii/S1387265608700097

(1995) Subject index volumes 26–50, 1986–1995 26–50. Aquatic Botany 50, 245-337.  http://www.sciencedirect.com/science/article/pii/S0304377001800036

(1995) Author index volumes 26–50, 1986–1995. Aquatic Botany 50, 209-244.  http://www.sciencedirect.com/science/article/pii/S0304377001800024

Pugh R, Witty JF, Mytton LR and Minchin FR (1995) The effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.). J. Exp. Bot. 46, 285-290.  http://jxb.oxfordjournals.org/cgi/content/abstract/46/3/285

Ndoye I, de Billy F, Vasse J, Dreyfus B and Truchet G (1994) Root nodulation of Sesbania rostrata. J. Bacteriol. 176, 1060-1068.  http://jb.asm.org/cgi/content/abstract/176/4/1060

Spencer D, James EK, Ellis GJ, Shaw JE and Sprent JI (1994) Interaction between rhizobia and potato tissues10. J. Exp. Bot. 45, 1475-1482.  http://jxb.oxfordjournals.org/cgi/content/abstract/45/10/1475

Garrett E C (1993) Species diversity in aquatic angiosperms: latitudinal patterns. Aquatic Botany 44, 229-258.  http://www.sciencedirect.com/science/article/pii/0304377093900725

James EK, Sprent JI, Hay GT and Minchin FR (1993) The Effect of Irradiance on the Recovery of Soybean Nodules from Sodium Chloride-Induced Senescence. J. Exp. Bot. 44, 997-1005.  http://jxb.oxfordjournals.org/cgi/content/abstract/44/6/997

Naisbitt T and Sprent JI (1993) The Long-Term Effects of Nitrate on the Growth and Nodule Structure of the Caesalpinioid Herbaceous Legume Chamaecrista fasciculata Michaux. J. Exp. Bot. 44, 829-836.  http://jxb.oxfordjournals.org/cgi/content/abstract/44/4/829

Pellegrineschi A and Tepfer D (1993) Micropropagation and plant regeneration in Sesbania rostrata. Plant Science 88, 113-119.  http://www.sciencedirect.com/science/article/pii/016894529390116H

James EK, Minchin FR and Sprent JI (1992) The Physiology and Nitrogen-fixing Capability of Aquatically and Terrestrially Grown Neptunia plena: The Importance of Nodule Oxygen Supply. Ann. Bot. 69, 181-187.  http://aob.oxfordjournals.org/cgi/content/abstract/69/2/181

James EK, Sprent JI, Sutherland JM, McInroy SG and Minchin FR (1992) The Structure of Nitrogen Fixing Root Nodules on the Aquatic Mimosoid Legume Neptunia plena. Ann. Bot. 69, 173-180.  http://aob.oxfordjournals.org/cgi/content/abstract/69/2/173

Forno IW, Kassulke RC and Day MD (1991) Life cycle and host testing procedures for Carmenta mimosa Eichlin and Passoa (Lepidoptera: Sesiidae), a biological control agent for Mimosa pigra L. (Mimosaceae) in Australia. Biological Control 1, 309-315.  http://www.sciencedirect.com/science/article/pii/104996449190083C

(1988) Author index. Aquatic Botany 30, 407-409.  http://www.sciencedirect.com/science/article/pii/0304377088900721

(1988) Contents of Aquatic botany, volume 30. Aquatic Botany 30, 411-412.  http://www.sciencedirect.com/science/article/pii/0304377088900733

Adsersen A, Adsersen H and Brimer L (1988) Cyanogenic constituents in plants from the Galápagos Islands. Biochemical Systematics and Ecology 16, 65-77.  http://www.sciencedirect.com/science/article/pii/0305197888901202

McInroy SG, Andrews M and Sprent JI (1988) Growth, nodulation and nitrate reductase activity in the aquatic legume Neptunia plena (L.) benth. At different external nitrate concentrations. Aquatic Botany 30, 379-387.  http://www.sciencedirect.com/science/article/pii/0304377088900691

Umrath K and Kastberger G (1983) Action potentials of the high-speed conduction in Mimosa pudica and Neptunia plena. Phyton : Annales rei botanicae., 1.

Steiner G (1980) Living wood fibres formed in the motor organs of Mimosa pudica and Neptunia plena. Lebende Holzfasern in den Gelenken von Mimosa pudica und Neptunia plena. Phyton; annales rei botanicae. 20, 325-331.

Krauss GJ and Reinbothe H (1973) Die freien aminosäuren in samen von mimosaceae. Phytochemistry 12, 125-142.  http://www.sciencedirect.com/science/article/pii/S0031942200846336

Barreto EF, Straliotto Rn and Baldani JI Curing of a non-symbiotic plasmid of the Rhizobium tropici strain CIAT 899 affected nodule occupancy and competitiveness of the bacteria in symbiosis with common beans. European Journal of Soil Biology 50, 91-96.  http://www.sciencedirect.com/science/article/pii/S116455631100135X

Gol SR, Sprent JI and Jacob-Neto J Effect of different sources of N2 on the structure of Mimosa caesalpiniaefolia root nodules. Soil Biology and Biochemistry 29, 983-987.  http://www.sciencedirect.com/science/article/pii/S0038071796002313

Heard TA, Elliott LP, et al. Biology, host specificity, release and establishment of Macaria pallidata and Leuciris fimbriaria (Lepidoptera: Geometridae), biological control agents of the weed Mimosa pigra. Biological Control 55, 248-255.  http://www.sciencedirect.com/science/article/pii/S1049964410001763

J.I S Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biology and Biochemistry 27, 401-407.  http://www.sciencedirect.com/science/article/pii/003807179598610Z

 

Justino GC and Sodek L Recovery of nitrogen fixation after short-term flooding of the nodulated root system of soybean. Journal of Plant Physiology 170, 235-241.  http://www.sciencedirect.com/science/article/pii/S0176161712004804

K.B W Physiology of the legume nodule and its response to stress. Soil Biology and Biochemistry 27, 637-655.  http://www.sciencedirect.com/science/article/pii/0038071795986444

Valverde A, Velazquez E, Cervantes E, Igual JM and van Berkum P Evidence of an American Origin for Symbiosis-Related Genes in Rhizobium lusitanum. Appl. Envir. Microbiol. 77, 5665-5670.  http://aem.asm.org/cgi/content/abstract/77/16/5665

 


RIRDC Farm Diversity Website: http://www.farmdiversity.com.au/

 

Rural Industries Research and Development Corporation (RIRDC)
Home Page

RIRDC New and Developing Plant Industries
Home Page

includes publications and project reports

RIRDC New Crop Industries Handbook
530 pages
as pdf download


RIRDC
essential oils, tea tree oil, wildflowers and natives, bioenergy, organic farming


Grateful acknowledgment is made to the following: for plant names: Australian Plant Name Index, Australian National Herbarium http://www.anbg.gov.au/cpbr/databases/apni-search-full.html; ; The International Plant Names Index, Royal Botanic Gardens, Kew/Harvard University Herbaria/Australian National Herbarium http://www.ipni.org/index.html; Plants Database, United States Department of Agriculture, National Resources Conservation Service http://plants.usda.gov/;DJ Mabberley (1997) The Plant Book, Cambridge University Press (Second Edition); JH Wiersma and B Leon (1999) World Economic Plants, CRC Press; RJ Hnatiuk (1990) Census of Australian Vascular Plants, Australian Government Publishing Service; for information: Science Direct http://www.sciencedirect.com/; Wiley Online Library http://onlinelibrary.wiley.com/advanced/search; High Wire http://highwire.stanford.edu/cgi/search; Oxford Journals http://services.oxfordjournals.org/search.dtl; USDA National Agricultural Library http://agricola.nal.usda.gov/booleancube/booleancube_search_cit.html; for synonyms: The Plant List http://www.theplantlist.org/; for common names: http://en.wikipedia.org/wiki/Main_Page; etc.


All information is included in good faith but this website does not warrant or guarantee the accuracy of any information on these pages, nor does the website accept responsibility for any loss arising from the use of this information.  Views and opinions are those of the authors themselves.  Every effort has been made to respect copyright owners' rights. 


Contact: Webmaster, Australian New Crops Website
australiannewcrops@gmail.com
Latest update March 2017 by: ANCW