Australian New Crops Info 2016
Supported by the Rural Industries Research and Development Corporation

Listing of Interesting Plants of the World:

Nicotiana sanderae

 

 

This species is usually known as:

Nicotiana × sanderae

 

This species has no synonyms in The Plant List

 

No common names have been found

 

 

Trends (five databases) 1901-2013:
[Number of papers mentioning Nicotiana sanderae: 86]

 

 

Popularity of Nicotiana sanderae over time
[Left-hand Plot: Plot of numbers of papers mentioning Nicotiana sanderae (histogram and left hand axis scale of left-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box); Right-hand Plot: Plot of a proportional micro index, derived from numbers of papers mentioning Nicotiana sanderae as a proportion (scaled by multiplying by one million) of the approximate total number of papers available in databases for that year (frequency polygon and left-hand axis scale of right-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box)] 

[For larger charts showing the numbers of papers that have mentioned this species over years, select this link; there are links to come back from there]

 

Keywords

[Total number of keywords included in the papers that mentioned this species: 222]

 

nicotiana sanderae (7), Nicotiana (6), tobacco (5), nectar (4), nectaries (4), Nicotiana langsdorffii (4), gene expression (3), Internet resource (3), Petunia (3), Solanaceae (3), amino acid sequences (2), Camellia sinensis (2), Capsicum annuum (2), carbohydrate metabolism (2), Carbonic anhydrase (2), Catechin biosynthesis (2), complementary DNA (2), Differential gene expression (2), EDGP (2), <ARROW Endochitinase (2), flowers (2), Gene cloning (2), Glucose oxidase (2), hybrids (2), interspecific hybridization (2), Lotus japonicus (2), messenger RNA (2), Methyl jasmonate (2), molecular sequence data (2), Nicotiana tabacum (2), Nodule (2), nucleotide sequences (2), Pathogenesis-related proteins (2), Peroxidase (2), plant biochemistry (2), plant physiology (2), RNase (2), S-RNase (2), Symbiotic nitrogen fixation (2), Tea calli (2), Terpenes (2), Tobacco Nectarin (2), transcription (genetics) (2), transcription factor (2), XEGIP (2), ×&#xa0 (1), Allopolyploidy (1), amyloplasts (1), anther culture (1), antioxidants (1), ascorbic acid (1), Auxin-binding protein (1), Benzylisoquinoline alkaloid (1), Berberine bridge enzyme (1), beta-carotene (1), biochemical pathways (1), carbohydrate composition (1), carbonate dehydratase (1), Cardiochiles nigriceps (1), cell differentiation (1), cell division (1), Cell-cell recognition (higher plants) (1), chemical constituents of plants (DOWN>1), chromoplasts (1), color (1), derivatives (1), Dioxygenase (1), enzyme activity (1), flavonol glycosides (1), flower (1), flowering (1), flowers. (1), genbank/af132671 (1), gene expression regulation (1), genes (1), Georgia (1), Germin (1), Germin-like protein (1), Gibberellin (1), Glomus intraradices (1), GLP (1), Heliothis virescens (1), homozygous (1), host plant attractants (1), host plants (1), β-Cyclodextrins (1), insect attractants (1), introns (1), Legumin (1), matK (1), Metabolic diversity (1), Metalloenzymes (1)…..

 

[If all keywords are not here (as indicated by .....), they can be accessed from this link; there are links to come back from there]

 

 

Most likely scope for crop use/product (%):
[Please note: When there are only a few papers mentioning a species, care should be taken with the interpretation of these crop use/product results; as well, a mention may relate to the use of a species, or the context in which it grows, rather than a product]

 

honey (96.76), medicinal (0.45), timber (0.38), poison (0.27), weed (0.25), fruit (0.19), boundary (0.16), starch (0.16), cereal (0.11), nutraceutical (0.10)…..

 

[To see the full list of crop use/product outcomes, from searching abstracts of the papers that have mentioned this species, select this link; details of the analysis process have also been included; there are links to come back from there]

 

 

Recent mentions of this species in the literature:
[since 2012, with links to abstracts; The references from 1901-2013 which have been used for the trend, keyword and crop use/product analyses below, are listed below these references]

 

Kroumova ABM, Zaitlin D and Wagner GJ (2016) Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species. Phytochemistry 130, 218-227. //www.sciencedirect.com/science/article/pii/S0031942216301108

Alsayied NF, Fernandez JA, Schwarzacher T and Heslop-Harrison JS (2015) Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP). Ann. Bot. 116, 359-368. http://aob.oxfordjournals.org/cgi/content/abstract/116/3/359

Carvalho FEL, Ware MA and Ruban AV (2015) Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis. Plant, Cell & Environment 38, 2603-2617. http://dx.doi.org/10.1111/pce.12574

Enzenbacher TB, Naegele RP and Hausbeck MK (2015) Susceptibility of Greenhouse Ornamentals to Phytophthora capsici and P. tropicalis. Plant disease. 99, 1808-1815. http://dx.doi.org/10.1094%2FPDIS-03-15-0333-RE

Specht A, de Paula-Moraes SV and Sosa-Gómez DR (2015) Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae). Revista Brasileira de Entomologia 59, 343-345. //www.sciencedirect.com/science/article/pii/S0085562615001089

Zdorovenko EL, Varbanets LD, Shashkov AS, Kiprianova EA and Knirel YA (2015) Structure of the O-polysaccharide of the lipopolysaccharide of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306. Carbohydrate Research 410, 47-50. //www.sciencedirect.com/science/article/pii/S0008621515001044

Gibbs PE (2014) Late-acting self-incompatibility – the pariah breeding system in flowering plants. New Phytologist 203, 717-734. http://dx.doi.org/10.1111/nph.12874

Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK and Heslop-Harrison JSP (2014) Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J. Exp. Bot. 65, 3165-3175. http://jxb.oxfordjournals.org/cgi/content/abstract/65/12/3165

Pasqual M, Soares JDR and Rodrigues FA (2014) Chapter 7 - Tissue Culture Applications for the Genetic Improvement of Plants. In Biotechnology and Plant Breeding (Ed.^(Eds  pp. 157-178. (Academic Press: San Diego). //www.sciencedirect.com/science/article/pii/B9780124186729000076

Wang W, Liu G, Niu H, Timko MP and Zhang H (2014) The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90). J. Exp. Bot. 65, 2147-2160. http://jxb.oxfordjournals.org/cgi/content/abstract/65/8/2147

Lüttge U (2013) Green nectaries: the role of photosynthesis in secretion. Botanical Journal of the Linnean Society 173, 1-11. http://dx.doi.org/10.1111/boj.12066

Munoz-Merida A, Gonzalez-Plaza JJ, et al. (2013) De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome. DNA Res 20, 93-108. http://dnaresearch.oxfordjournals.org/cgi/content/abstract/20/1/93

Obrępalska-Stęplowska A, Wieczorek P, Budziszewska M, Jeszke A and Renaut J (2013) How can plant virus satellite RNAs alter the effects of plant virus infection? A study of the changes in the Nicotiana benthamiana proteome after infection by Peanut stunt virus in the presence or absence of its satellite RNA. PROTEOMICS 13, 2162-2175. http://dx.doi.org/10.1002/pmic.201200056

Sangwan RS, Tripathi S, Singh J, Narnoliya LK and Sangwan NS (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 525, 58-76. //www.sciencedirect.com/science/article/pii/S0378111913005544

Heslop-Harrison JS (2012) Genome evolution: extinction, continuation or explosion? Current Opinion in Plant Biology 15, 115-121. http://www.sciencedirect.com/science/article/pii/S1369526612000416

Liu G and Thornburg RW (2012) Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. The Plant Journal 70, 377-388. http://dx.doi.org/10.1111/j.1365-313X.2011.04875.x

Setsuko S, Uchiyama K, Sugai K and Yoshimaru H (2012) Isolation and characterization of EST-SSR markers in Schima mertensiana (Theaceae) using pyrosequencing technology. Am. J. Botany 99, e38-42. http://www.amjbot.org/cgi/content/abstract/99/1/e38

Spitzer-Rimon B, Farhi M, et al. (2012) The R2R3-MYB-Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating ODO1 and Structural Scent-Related Genes in Petunia. PLANT CELL 24, 5089-5105. http://www.plantcell.org/cgi/content/abstract/24/12/5089

Szczesniak MW, Deorowicz S, Gapski J, Kaczynski L and Makalowska I (2012) miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res. 40, D198-204. http://nar.oxfordjournals.org/cgi/content/abstract/40/D1/D198

Yang D, Liu Y, Sun M, Zhao L, Wang Y, Chen X, Wei C, Gao L and Xia T (2012) Differential gene expression in tea (Camellia sinensis L.) calli with different morphologies and catechin contents. Journal of Plant Physiology 169, 163-175. http://www.sciencedirect.com/science/article/pii/S0176161711004159

Zha H-G, Flowers VL, Yang M, Chen L-Y and Sun H (2012) Acidic {alpha}-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum). Ann. Bot. 109, 735-745. http://aob.oxfordjournals.org/cgi/content/abstract/109/4/735

 

 

References 1901-2013 (and links to abstracts):
[Number of papers mentioning Nicotiana sanderae: 86; Any undated papers have been included at the end]

 

Munoz-Merida A, Gonzalez-Plaza JJ, et al. (2013) De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome. DNA Res 20, 93-108.  http://dnaresearch.oxfordjournals.org/cgi/content/abstract/20/1/93

Heslop-Harrison JS (2012) Genome evolution: extinction, continuation or explosion? Current Opinion in Plant Biology 15, 115-121.  http://www.sciencedirect.com/science/article/pii/S1369526612000416

Liu G and Thornburg RW (2012) Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. The Plant Journal 70, 377-388.  http://dx.doi.org/10.1111/j.1365-313X.2011.04875.x

Setsuko S, Uchiyama K, Sugai K and Yoshimaru H (2012) Isolation and characterization of EST-SSR markers in Schima mertensiana (Theaceae) using pyrosequencing technology. Am. J. Botany 99, e38-42.  http://www.amjbot.org/cgi/content/abstract/99/1/e38

Spitzer-Rimon B, Farhi M, et al. (2012) The R2R3-MYB-Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating ODO1 and Structural Scent-Related Genes in Petunia. PLANT CELL 24, 5089-5105.  http://www.plantcell.org/cgi/content/abstract/24/12/5089

Szczesniak MW, Deorowicz S, Gapski J, Kaczynski L and Makalowska I (2012) miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res. 40, D198-204.  http://nar.oxfordjournals.org/cgi/content/abstract/40/D1/D198

Yang D, Liu Y, Sun M, Zhao L, Wang Y, Chen X, Wei C, Gao L and Xia T (2012) Differential gene expression in tea (Camellia sinensis L.) calli with different morphologies and catechin contents. Journal of Plant Physiology 169, 163-175.  http://www.sciencedirect.com/science/article/pii/S0176161711004159

Zha H-G, Flowers VL, Yang M, Chen L-Y and Sun H (2012) Acidic {alpha}-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum). Ann. Bot. 109, 735-745.  http://aob.oxfordjournals.org/cgi/content/abstract/109/4/735

Chatelet DS, Wistrom CM, Purcell AH, Rost TL and Matthews MA (2011) Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. Ann. Bot. 108, 73-85.  http://aob.oxfordjournals.org/cgi/content/abstract/108/1/73

Colquhoun TA, Schwieterman ML, et al. (2011) EOBII Controls Flower Opening by Functioning as a General Transcriptomic Switch. Plant Physiology 156, 974-984.  http://www.plantphysiol.org/cgi/content/abstract/156/2/974

Heil M (2011) Nectar: generation, regulation and ecological functions. Trends in Plant Science 16, 191-200.  http://www.sciencedirect.com/science/article/pii/S1360138511000069

Hillwig MS, Kanobe C, Thornburg RW and MacIntosh GC (2011) Identification of S-RNase and peroxidase in petunia nectar. Journal of Plant Physiology 168, 734-738.  http://www.sciencedirect.com/science/article/pii/S0176161710004797

Kajikawa M, Shoji T, Kato A and Hashimoto T (2011) Vacuole-Localized Berberine Bridge Enzyme-Like Proteins Are Required for a Late Step of Nicotine Biosynthesis in Tobacco. Plant Physiology 155, 2010-2022.  http://www.plantphysiol.org/cgi/content/abstract/155/4/2010

Martin H (2011) Nectar: generation, regulation and ecological functions. Trends in Plant Science 16, 191-200.  http://www.sciencedirect.com/science/article/pii/S1360138511000069

Nepi M, Bini L, Bianchi L, Puglia M, Abate M and Cai G (2011) Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo. Ann. Bot. 108, 521-527.  http://aob.oxfordjournals.org/cgi/content/abstract/108/3/521

Patel D, Power JB, Anthony P, Badakshi F, Heslop-Harrison JS and Davey MR (2011) Somatic hybrid plants of Nicotiana x sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina. Ann. Bot. 108, 809-819.  http://aob.oxfordjournals.org/cgi/content/abstract/108/5/809

Shepelevitch VV, Shubchynskyy VV, Varbanets LD and Kiprianova EA (2011) Antiviral Activity of Carbohydrate-containing Biopolymers of Pseudomonas chlororaphis subsp. aureofaciens. Antiviral Research 90, A64.  http://www.sciencedirect.com/science/article/pii/S016635421100180X

Song S, Qi T, et al. (2011) The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in Arabidopsis. PLANT CELL 23, 1000-1013.  http://www.plantcell.org/cgi/content/abstract/23/3/1000

Tsikou D, Stedel C, Kouri ED, Udvardi MK, Wang TL, Katinakis P, Labrou NE and Flemetakis E (2011) Characterization of two novel nodule-enhanced α-type carbonic anhydrases from Lotus japonicus. Biochimica et Biophysica Acta (BBA) - Proteins &amp; Proteomics 1814, 496-504.  http://www.sciencedirect.com/science/article/pii/S1570963911000112

Van Moerkercke A, Haring MA and Schuurink RC (2011) The transcription factor EMISSION OF BENZENOIDS II activates the MYB ODORANT1 promoter at a MYB binding site specific for fragrant petunias. The Plant Journal 67, 917-928.  http://dx.doi.org/10.1111/j.1365-313X.2011.04644.x

Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal 8, 377-424.  http://dx.doi.org/10.1111/j.1467-7652.2009.00498.x

Gonzalez-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM and Heil M (2010) Glucanases and Chitinases as Causal Agents in the Protection of Acacia Extrafloral Nectar from Infestation by Phytopathogens. Plant Physiology 152, 1705-1715.  http://www.plantphysiol.org/cgi/content/abstract/152/3/1705

Harper AD, Stalnaker SH, Wells L, Darvill A, Thornburg R and York WS (2010) Interaction of Nectarin 4 with a fungal protein triggers a microbial surveillance and defense mechanism in nectar. Phytochemistry 71, 1963-1969.  http://www.sciencedirect.com/science/article/pii/S003194221000350X

Hillwig MS, Liu X, Liu G, Thornburg RW and MacIntosh GC (2010) Petunia nectar proteins have ribonuclease activity. J. Exp. Bot. 61, 2951-2965.  http://jxb.oxfordjournals.org/cgi/content/abstract/61/11/2951

Sabater-Jara AB, Almagro L, Belchí-Navarro S, Ferrer MÁ, Barceló AR and Pedreño MÁ (2010) Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. Journal of Plant Physiology 167, 1273-1281.  http://www.sciencedirect.com/science/article/pii/S0176161710002361

Spitzer-Rimon B, Marhevka E, et al. (2010) EOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles’ Biosynthesis in Petunia. PLANT CELL 22, 1961-1976.  http://www.plantcell.org/cgi/content/abstract/22/6/1961

Yamashiro K, Yokobori S-I, Koikeda S and Yamagishi A (2010) Improvement of Bacillus circulans {beta}-amylase activity attained using the ancestral mutation method. Protein Eng. Des. Sel. 23, 519-528.  http://peds.oxfordjournals.org/cgi/content/abstract/23/7/519

Kondo K, Yamada K, Nakagawa A, Takahashi M, Morikawa H and Sakamoto A (2008) Molecular characterization of atmospheric NO2-responsive germin-like proteins in azalea leaves. Biochemical and Biophysical Research Communications 377, 857-861.  http://www.sciencedirect.com/science/article/pii/S0006291X08020342

Schmitt B, Stadler R and Sauer N (2008) Immunolocalization of Solanaceous SUT1 Proteins in Companion Cells and Xylem Parenchyma: New Perspectives for Phloem Loading and Transport. Plant Physiology 148, 187-199.  http://www.plantphysiol.org/cgi/content/abstract/148/1/187

Carter C, Healy R, O’Tool NM, Naqvi SMS, Ren G, Park S, Beattie GA, Horner HT and Thornburg RW (2007) Tobacco Nectaries Express a Novel NADPH Oxidase Implicated in the Defense of Floral Reproductive Tissues against Microorganisms. Plant Physiology 143, 389-399.  http://www.plantphysiol.org/cgi/content/abstract/143/1/389

Horner HT, Healy RA, Ren G, Fritz D, Klyne A, Seames C and Thornburg RW (2007) Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. American journal of botany. 94, 12-24.  http://www.amjbot.org/

Minorsky PV (2007) On the Inside. Plant Physiology 143, 1-2.  http://www.plantphysiol.org

Ren G, Healy RA, Klyne AM, Horner HT, James MG and Thornburg RW (2007) Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant science. 173, 277-290.  http://dx.doi.org/10.1016/j.plantsci.2007.05.008

Nathalie J (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science 11, 359-367.  http://www.sciencedirect.com/science/article/pii/S1360138506001312

van Hellemond EW, Leferink NGH, Heuts DPHM, Fraaije MW and van Berkel WJH (2006) Occurrence and Biocatalytic Potential of Carbohydrate Oxidases. In ‘Advances in Applied Microbiology’ (Ed.^(Eds Allen I. Laskin SS and Geoffrey MG) pp. 17-54. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065216406600026

Gibson JL and Crowley S (2005) EFFICACY OF FLURPRIMIDOL (TOPFLOR) ON WARM-SEASON BEDDING PLANTS. HortScience 40, 881-e-882.  http://hortsci.ashspublications.org/cgi/content/abstract/40/3/881-e

Liscombe DK, MacLeod BP, Loukanina N, Nandi OI and Facchini PJ (2005) Erratum to “Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms” [Phytochemistry 66 (2005) 1374–1393]. Phytochemistry 66, 2500-2520.  http://www.sciencedirect.com/science/article/pii/S0031942205004255

Liscombe DK, MacLeod BP, Loukanina N, Nandi OI and Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374-1393.  http://www.sciencedirect.com/science/article/pii/S003194220500186X

Naqvi SMS, Harper A, Carter C, Ren G, Guirgis A, York WS and Thornburg RW (2005) Nectarin IV, a Potent Endoglucanase Inhibitor Secreted into the Nectar of Ornamental Tobacco Plants. Isolation, Cloning, and Characterization. Plant Physiology 139, 1389-1400.  http://www.plantphysiol.org/cgi/content/abstract/139/3/1389

Carter C and Thornburg RW (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science 9, 320-324.  http://www.sciencedirect.com/science/article/pii/S1360138504001359

Carter CJ and Thornburg RW (2004) Tobacco Nectarin V Is a Flavin-Containing Berberine Bridge Enzyme-Like Protein with Glucose Oxidase Activity. Plant Physiology 134, 460-469.  http://www.plantphysiol.org/cgi/content/abstract/134/1/460

Carter CJ and Thornburg RW (2004) Tobacco nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant molecular biology. 54, 415-125.  http://www.kluweronline.com/issn/0167-4412/contents

Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR and Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Molecular Phylogenetics and Evolution 33, 75-90.  http://www.sciencedirect.com/science/article/pii/S1055790304001447

Dunwell JM, Purvis A and Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7-17.  http://www.sciencedirect.com/science/article/pii/S0031942203005466

Kao T-h and Tsukamoto T (2004) The Molecular and Genetic Bases of S-RNase-Based Self-Incompatibility. PLANT CELL 16, S72-83.  http://www.plantcell.org

Kovalenko OH and Kyrychenko AM (2004) [TMV-infection localization and development of induced virus resistance in Nicotiana sanderae Hort., Datura stramonium L. and Datura metel]. Mikrobiol Z 66, 43-7.

Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V and Parokonny AS (2003) Molecular Systematics, GISH and the Origin of Hybrid Taxa in Nicotiana (Solanaceae). Ann. Bot. 92, 107-127.  http://aob.oxfordjournals.org/cgi/content/abstract/92/1/107

Maier W, Schmidt J, Nimtz M, Wray V and Strack D (2000) Secondary products in mycorrhizal roots of tobacco and tomato. Phytochemistry. 54, 473-479.

Carter C, Graham RA and Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant molecular biology. 41, 207-216.

Jackson DM, Nottingham SF, Schlotzhauer WS, Horvat RJ, Sisson VA, Stephenson MG, Foard T and McPherson RM (1996) Abundance of Cardiochiles nigriceps (Hymenoptera: Braconidae) on Nicotiana species (Solanaceae). Environmental entomology. 25, 1248-1255.

Franklin FCH, Lawrence MJ and Franklin-Tong VE (1995) Cell and Molecular Biology of Self-Incompatibility in Flowering Plants. In ‘International Review of Cytology’ (Ed.^(Eds Kwang WJ and Jonathan J) pp. 1-64. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0074769608624857

Godward MBE and Pell K (1994) Inheritance of exine pattern in Nicotiana × sanderae (Solanaceae). Botanical Journal of the Linnean Society 115, 145-159.  http://www.sciencedirect.com/science/article/pii/S0024407484710382

Dzelzkalns VA, Nasrallah JB and Nasrallah ME (1992) Cell-cell communication in plants: Self-incompatibility in flower development. Developmental Biology 153, 70-82.  http://www.sciencedirect.com/science/article/pii/001216069290092U

Snook ME, Chortyk OT, Sisson VA and Costello CE (1992) The flower flavonols of Nicotiana species. Phytochemistry 31, 1639-1647.  http://www.sciencedirect.com/science/article/pii/003194229283120N

Terzaghi WB, Fork DC, Berry JA and Field CB (1989) Low and High Temperature Limits to PSII : A Survey Using trans-Parinaric Acid, Delayed Light Emission, and Fo Chlorophyll Fluorescence. Plant Physiology 91, 1494-1500.  http://www.plantphysiol.org/cgi/content/abstract/91/4/1494

Hardacre AK and Turnbull HL (1986) The Growth and Development of Maize (Zea mays L.) at Five Temperatures. Ann. Bot. 58, 779-787.  http://aob.oxfordjournals.org/cgi/content/abstract/58/6/779

(1984) Modification of cell ultrastructure during plant regeneration from protoplasts: Tor-Henning Iversen, Department of Botany, University of Trondheim, N-7000 Trondheim, Norway. Journal of Ultrastructure Research 88, 303.  http://www.sciencedirect.com/science/article/pii/S0022532084901588

(1984) Secretory cells of the transmitting tissue in the pistil of Strelitzia reginae: E. Kronestedt and B. Walles, Department of Botany, University of Stockholm, S-106 91 Stockholm, Sweden. Journal of Ultrastructure Research 88, 303-304.  http://www.sciencedirect.com/science/article/pii/S002253208490159X

(1984) Nitrogen in Anabaena cylindrica analyzed with scanning auger microscope: A. van Hofsten, L. Hällbom, P. Lindblad, B. Stridh,* and O. Vingsbo. *University of Uppsala, Institute of Physiological Botany, Box 540, and *Department of Technology, Box 534, S-751 21 Uppsala, Sweden. Journal of Ultrastructure Research 88, 302-303.  http://www.sciencedirect.com/science/article/pii/S0022532084901576

Asha PK, Shaila MS, Vaidyanathan CS and Ramakrishnan T (1983) RNA polymerase activity in isolated nuclei of Nicotiana sanderae callus: characteristics and modulation during differentiation. Journal of biosciences. 5, 347-353.

Sydow Bv and Hein A (1983) Effects of virus inhibitors on the infection of tobacco protoplasts with tobacco mosaic virus. Wirkung von Virushemmstoffen auf die Infektion von Tabakprotoplasten mit dem Tabakmosaik-Virus. Phytopathologische Zeitschrift = Journal of phytopathology. 106, 252-261.

Robacker CD and Ascher PD (1982) Nonrandom transmission of the S gene in Nemesia strumosa. J. Hered. 73, 439-443.  http://jhered.oxfordjournals.org/cgi/content/abstract/73/6/439

Passiatore JE and Sink KC (1981) Plant regeneration from leaf mesophyll protoplasts of selected ornamental nicotiana species. Journal of the American Society for Horticultural Science. 106, 799-803.

Vasil IK, Ahuja MR and Vasil V (1979) Plant Tissue Cultures in Genetics and Plant Breeding. In ‘Advances in Genetics’ (Ed.^(Eds Caspari EW) pp. 127-215. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065266008605465

Vyskot B and Novak FJ (1974) Experimental androgenesis in vitro in Nicotiana clevelandii Gray and Nicotiana sanderae hort.  44, 3.

R.I.B F (1973) Plant Rhabdoviruses. In ‘Advances in Virus Research’ (Ed.^(Eds Max A. Lauffer FBBKM and Kenneth MS) pp. 257-345. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065352708608246

Sand SA (1971) A mutable allele at the E locus in Nicotiana. Genetics 67, 1.

Schooley JB (1965) THE INCOMPATIBILITY MECHANISM OF THE BIENNIS GROUP I RACES OF OENOTHERA. Genetics 52, 145-152.  http://www.genetics.org

Dulieu H (1964) [DETECTION OF HAPLOID PLANTS AMONG PROGENY OF THE CROSS BETWEEN NICOTIANA TABACUM L. AND NICOTIANA SANDERAE HORT, FOLLOWING IRRADIATION OF POLLEN]. C R Hebd Seances Acad Sci 259, 4126-9.

Schultz ME (1962) INCOMPATIBILITY RELATIONSHIPS IN CERTAIN COMPLEX-HETEROZYGOTES OF OENOTHERA. Genetics 47, 819-838.  http://www.genetics.org

Smillie RM (1962) Photosynthetic & respiratory activities of growing pea leaves. Plant Physiology 37, 716-721.  http://www.plantphysiol.org

Sand SA (1957) PHENOTYPIC VARIABILITY AND THE INFLUENCE OF TEMPERATURE ON SOMATIC INSTABILITY IN CULTURES DERIVED FROM HYBRIDS BETWEEN NICOTIANA LANGSDORFFII AND N. SANDERAE. Genetics 42, 685-703.  http://www.genetics.org

Decker JP (1955) A Rapid, Postillumination Deceleration of Respiration in Green Leaves. Plant Physiology 30, 82-84.  http://www.plantphysiol.org

D L (1954) Comparative Incompatibility in Angiosperms and Fungi. In ‘Advances in Genetics’ (Ed.^(Eds Demerec M) pp. 235-285. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0065266008601315

Cook JW and Loudon JD (1952) Chapter X Colchicine. In ‘The Alkaloids: Chemistry and Physiology’ (Ed.^(Eds Manske RHF and Holmes HL) pp. 261-329. (Academic Press). http://www.sciencedirect.com/science/article/pii/S1876081308600275

Schwartz D (1951) THE INTERACTION OF NUCLEAR AND CYTOPLASMIC FACTORS IN THE INHERITANCE OF MALE STERILITY IN MAIZE. Genetics 36, 676-696.  http://www.genetics.org

Gerstel DU (1950) SELF-INCOMPATIBILITY STUDIES IN GUAYULE II. INHERITANCE. Genetics 35, 482-506.  http://www.genetics.org

Hughes MB and Babcock EB (1950) SELF-INCOMPATIBILITY IN CREPIS FOETIDA (L.) SUBSP. RHOEADIFOLIA (BIEB.) SCHINZ ET KELLER. Genetics 35, 570-588.  http://www.genetics.org

Lindstrom EW (1939) ABSTRACTS OF PAPERS PRESENTED AT THE 1938 MEETINGS OF THE GENETICS SOCIETY OF AMERICA. Genetics 24, 65-111.  http://www.genetics.org

Warmke HE and Blakeslee AF (1939) INDUCTION OF SIMPLE AND MULTIPLE POLYPLOIDY IN NICOTIANA BY COLCHICINE TREATMENT. J. Hered. 30, 419-432.  http://jhered.oxfordjournals.org

Sears ER (1937) CYTOLOGICAL PHENOMENA CONNECTED WITH SELF-STERILITY IN THE FLOWERING PLANTS. Genetics 22, 130-181.  http://www.genetics.org

Riley HP (1932) SELF-STERILITY IN SHEPHERD’S PURSE. Genetics 17, 231-295.  http://www.genetics.org

East EM and Yarnell SH (1929) STUDIES ON SELF-STERILITY. VIII. SELF-STERILITY ALLELOMORPHS. Genetics 14, 455-487.  http://www.genetics.org

Kostoff D (1929) ACQUIRED IMMUNITY IN PLANTS. Genetics 14, 37-77.  http://www.genetics.org

Brieger FG and Mangelsdorf AJ (1926) Linkage between a Flower Color Factor and Self-Sterility Factors. PNAS 12, 248-255.  http://www.pnas.org

Anderson E (1924) STUDIES ON SELF-STERILITY VI. THE GENETIC BASIS OF CROSS-STERILITY IN NICOTIANA. Genetics 9, 13-40.  http://www.genetics.org

Chatelet DS, Wistrom CM, Purcell AH, Rost TL and Matthews MA Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. Ann. Bot. 108, 73-85.  http://aob.oxfordjournals.org/cgi/content/abstract/108/1/73

Colquhoun TA, Schwieterman ML, et al. EOBII Controls Flower Opening by Functioning as a General Transcriptomic Switch. Plant Physiology 156, 974-984.  http://www.plantphysiol.org/cgi/content/abstract/156/2/974

Gonzalez-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM and Heil M Glucanases and Chitinases as Causal Agents in the Protection of Acacia Extrafloral Nectar from Infestation by Phytopathogens. Plant Physiology 152, 1705-1715.  http://www.plantphysiol.org/cgi/content/abstract/152/3/1705

Harper AD, Stalnaker SH, Wells L, Darvill A, Thornburg R and York WS Interaction of Nectarin 4 with a fungal protein triggers a microbial surveillance and defense mechanism in nectar. Phytochemistry 71, 1963-1969.  http://www.sciencedirect.com/science/article/pii/S003194221000350X

Heil M Nectar: generation, regulation and ecological functions. Trends in Plant Science 16, 191-200.  http://www.sciencedirect.com/science/article/pii/S1360138511000069

Heslop-Harrison JS Genome evolution: extinction, continuation or explosion? Current Opinion in Plant Biology 15, 115-121.  http://www.sciencedirect.com/science/article/pii/S1369526612000416

Hillwig MS, Kanobe C, Thornburg RW and MacIntosh GC Identification of S-RNase and peroxidase in petunia nectar. Journal of Plant Physiology 168, 734-738.  http://www.sciencedirect.com/science/article/pii/S0176161710004797

Kajikawa M, Shoji T, Kato A and Hashimoto T Vacuole-Localized Berberine Bridge Enzyme-Like Proteins Are Required for a Late Step of Nicotine Biosynthesis in Tobacco. Plant Physiology 155, 2010-2022.  http://www.plantphysiol.org/cgi/content/abstract/155/4/2010

Nepi M, Bini L, Bianchi L, Puglia M, Abate M and Cai G Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo. Ann. Bot. 108, 521-527.  http://aob.oxfordjournals.org/cgi/content/abstract/108/3/521

Patel D, Power JB, Anthony P, Badakshi F, Heslop-Harrison JS and Davey MR Somatic hybrid plants of Nicotiana x sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina. Ann. Bot. 108, 809-819.  http://aob.oxfordjournals.org/cgi/content/abstract/108/5/809

Sabater-Jara ABn, Almagro L, BelchÍ-Navarro S, Ferrer MaÃn, BarcelÓ AR and Pedreño MaÃn Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. Journal of Plant Physiology 167, 1273-1281.  http://www.sciencedirect.com/science/article/pii/S0176161710002361

Setsuko S, Uchiyama K, Sugai K and Yoshimaru H Isolation and characterization of EST-SSR markers in Schima mertensiana (Theaceae) using pyrosequencing technology. Am. J. Botany 99, e38-42.  http://www.amjbot.org/cgi/content/abstract/99/1/e38

Shepelevitch VV, Shubchynskyy VV, Varbanets LD and Kiprianova EA Antiviral Activity of Carbohydrate-containing Biopolymers of Pseudomonas chlororaphis subsp. aureofaciens. Antiviral Research 90, A64.  http://www.sciencedirect.com/science/article/pii/S016635421100180X

Song S, Qi T, et al. The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in Arabidopsis. PLANT CELL 23, 1000-1013.  http://www.plantcell.org/cgi/content/abstract/23/3/1000

Spitzer-Rimon B, Marhevka E, et al. EOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles’ Biosynthesis in Petunia. PLANT CELL 22, 1961-1976.  http://www.plantcell.org/cgi/content/abstract/22/6/1961

Szczesniak MW, Deorowicz S, Gapski J, Kaczynski L and Makalowska I miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res. 40, D198-204.  http://nar.oxfordjournals.org/cgi/content/abstract/40/D1/D198

Tsikou D, Stedel C, Kouri ED, Udvardi MK, Wang TL, Katinakis P, Labrou NE and Flemetakis E Characterization of two novel nodule-enhanced α-type carbonic anhydrases from Lotus japonicus. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814, 496-504.  http://www.sciencedirect.com/science/article/pii/S1570963911000112

Yamashiro K, Yokobori S-I, Koikeda S and Yamagishi A Improvement of Bacillus circulans {beta}-amylase activity attained using the ancestral mutation method. Protein Eng. Des. Sel. 23, 519-528.  http://peds.oxfordjournals.org/cgi/content/abstract/23/7/519

Yang D, Liu Y, Sun M, Zhao L, Wang Y, Chen X, Wei C, Gao L and Xia T Differential gene expression in tea (Camellia sinensis L.) calli with different morphologies and catechin contents. Journal of Plant Physiology.  http://www.sciencedirect.com/science/article/pii/S0176161711004159

Zha H-G, Flowers VL, Yang M, Chen L-Y and Sun H Acidic {alpha}-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum). Ann. Bot., mcr321.  http://aob.oxfordjournals.org/cgi/content/abstract/mcr321v1

 


RIRDC Farm Diversity Website: http://www.farmdiversity.com.au/

 

Rural Industries Research and Development Corporation (RIRDC)
Home Page

RIRDC New and Developing Plant Industries
Home Page

includes publications and project reports

RIRDC New Crop Industries Handbook
530 pages
as pdf download


RIRDC
essential oils, tea tree oil, wildflowers and natives, bioenergy, organic farming


Grateful acknowledgment is made to the following: for plant names: Australian Plant Name Index, Australian National Herbarium http://www.anbg.gov.au/cpbr/databases/apni-search-full.html; ; The International Plant Names Index, Royal Botanic Gardens, Kew/Harvard University Herbaria/Australian National Herbarium http://www.ipni.org/index.html; Plants Database, United States Department of Agriculture, National Resources Conservation Service http://plants.usda.gov/;DJ Mabberley (1997) The Plant Book, Cambridge University Press (Second Edition); JH Wiersma and B Leon (1999) World Economic Plants, CRC Press; RJ Hnatiuk (1990) Census of Australian Vascular Plants, Australian Government Publishing Service; for information: Science Direct http://www.sciencedirect.com/; Wiley Online Library http://onlinelibrary.wiley.com/advanced/search; High Wire http://highwire.stanford.edu/cgi/search; Oxford Journals http://services.oxfordjournals.org/search.dtl; USDA National Agricultural Library http://agricola.nal.usda.gov/booleancube/booleancube_search_cit.html; for synonyms: The Plant List http://www.theplantlist.org/; for common names: http://en.wikipedia.org/wiki/Main_Page; etc.


All information is included in good faith but this website does not warrant or guarantee the accuracy of any information on these pages, nor does the website accept responsibility for any loss arising from the use of this information.  Views and opinions are those of the authors themselves.  Every effort has been made to respect copyright owners' rights. 


Contact: Webmaster, Australian New Crops Website
australiannewcrops@gmail.com
Latest update March 2017 by: ANCW