Australian New Crops Info 2016
Supported by the Rural Industries Research and Development Corporation

Listing of Interesting Plants of the World:

Quercus myrtifolia

 

 

This species is usually known as:

Quercus myrtifolia

 

This species has also been known as:

Quercus myrtifolia f. ampla

 

Common names:

Myrtle Oak

 

 

Trends (five databases) 1901-2013:
[Number of papers mentioning Quercus myrtifolia: 165]

 

 

Popularity of Quercus myrtifolia over time
[Left-hand Plot: Plot of numbers of papers mentioning Quercus myrtifolia (histogram and left hand axis scale of left-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box); Right-hand Plot: Plot of a proportional micro index, derived from numbers of papers mentioning Quercus myrtifolia as a proportion (scaled by multiplying by one million) of the approximate total number of papers available in databases for that year (frequency polygon and left-hand axis scale of right-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box)] 

[For larger charts showing the numbers of papers that have mentioned this species over years, select this link; there are links to come back from there]

 

Keywords

[Total number of keywords included in the papers that mentioned this species: 926]

 

elevated CO2 (39), quercus myrtifolia (15), Stomatal conductance (14), carbon dioxide (13), Florida (13), photosynthesis (12), climate change (9), Kennedy space center (8), quercus geminata (8), Nitrogen (7), Quercus (7), Rubisco (6), Acclimation (5), Gas exchange (5), Internet resource (5), Open-Top Chambers (5), Populus (5), stomata (5), adaptation (4), elevated carbon dioxide (4), Elevated <ARROW temperature (4), Eucalyptus (4), FACE (4), herbivory (4), high temperature (4), insect herbivory (4), Leaf area index (4), open-top chamber (4), plant–herbivore interactions (4), quercus chapmanii (4), Scrub (4), scrub oak (4), water use efficiency (4), Biomass (3), CO2 (3), decomposition (3), evapotranspiration (3), Fire (3), growth (3), leaf chemistry (3), leaves (3), long-term effects (3), minirhizotrons (3), oak trees (3), ozone (3), photosynthetic acclimation (3), Pinus palustris Mill. (3), precipitation (3), salinity (3), Sandhill (3), sap flow (3), scrub-oak ecosystem (3), stable isotopes (3), stomatal density (3), temperature (3), Transpiration (3), [CO2] enrichment (2), aboveground biomass (2), abundance (2), alternate disturbances (2), ammonium (2), anthocyanin biosynthesis (2), Aristida stricta Michx. (2), Asclepias syriaca (2), autumnal senescence (2), Betula papyrifera (2), biodegradation (2), biodiversity (2), boreal forest (2), C sequestration (2), Calluna vulgaris (2), canopy closure (2DOWN>), carbon dioxide enrichment (2), Carbon-dioxide (2), Cariniana legalis (2), cDNA microarray (2), Chesapeake Bay wetland (2), Chlorophyll (2), chlorophyll fluorescence (2), CLIMAITE (2), Conflict resolution (2), Consumers (2), Croton urucurana (2), Cynipidae (2), Deschampsia flexousa (2), Detritivores (2), Digestible nutrients (2), drought (2), Ectoedemia (2), Elevated [CO2] (2), elevated atmospheric CO2 (2), elevated atmospheric gases (2), elevated COâ‚‚ (2), elevated ozone (2), Energy dissipation (2)…..

 

[If all keywords are not here (as indicated by .....), they can be accessed from this link; there are links to come back from there]

 

 

Most likely scope for crop use/product (%):
[Please note: When there are only a few papers mentioning a species, care should be taken with the interpretation of these crop use/product results; as well, a mention may relate to the use of a species, or the context in which it grows, rather than a product]

 

cane/bamboo (41.85), shade (16.33), timber (11.37), tannin (6.02), medicinal (4.66), weed (2.57), green manure (2.43), nut (1.69), poison (1.63), soil amelioration (0.81)…..

 

[To see the full list of crop use/product outcomes, from searching abstracts of the papers that have mentioned this species, select this link; details of the analysis process have also been included; there are links to come back from there]

 

 

Recent mentions of this species in the literature:
[since 2012, with links to abstracts; The references from 1901-2013 which have been used for the trend, keyword and crop use/product analyses below, are listed below these references]

 

Bernal B, McKinley DC, Hungate BA, White PM, Mozdzer TJ and Megonigal JP (2016) Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biology and Biochemistry 98, 85-94. http://www.sciencedirect.com/science/article/pii/S0038071716300347

Chalk PM, Lam SK and Chen D (2016) 15N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review. Science of The Total Environment 571, 624-632. http://www.sciencedirect.com/science/article/pii/S0048969716314759

Fernàndez-Martínez J and Fleck I (2016) Photosynthetic limitation of several representative subalpine species in the Catalan Pyrenees in summer. Plant Biology 18, 638-648. http://dx.doi.org/10.1111/plb.12439

Baig S, Medlyn BE, Mercado LM and Zaehle S (2015) Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Global Change Biology 21, 4303-4319. http://dx.doi.org/10.1111/gcb.12962

Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusià J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardans J, Sus O, Vallejo VR, Vayreda J and Retana J (2015) Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Global Ecology and Biogeography 24, 25-43. http://dx.doi.org/10.1111/geb.12224

Ellsworth PZ and Sternberg LSL (2015) Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 8, 538-551. http://dx.doi.org/10.1002/eco.1523

Foster TE, Schmalzer PA and Fox GA (2015) Seasonal climate and its differential impact on growth of co-occurring species. European journal of forest research. 134, 497-510. http://dx.doi.org/10.1007/s10342-015-0867-1

Hannah L (2015) Chapter 10 - Insights from Experimentation. In ‘Climate Change Biology (Second Edition)’. (Ed.^(Eds  pp. 213-235. (Academic Press: Boston). http://www.sciencedirect.com/science/article/pii/B978012420218400010X

Tor-ngern P, Oren R, Ward EJ, Palmroth S, McCarthy HR and Domec J-C (2015) Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytologist 205, 518-525. http://dx.doi.org/10.1111/nph.13148

Breininger DR, Stolen ED, Carter GM, Oddy DM and Legare SA (2014) Quantifying how territory quality and sociobiology affect recruitment to inform fire management. Animal Conservation 17, 72-79. http://dx.doi.org/10.1111/acv.12059

Anderson-Teixeira KJ, Miller AD, Mohan JE, Hudiburg TW, Duval BD and DeLucia EH (2013) Altered dynamics of forest recovery under a changing climate. Global Change Biology 19, 2001-2021. http://dx.doi.org/10.1111/gcb.12194

Day FP, Schroeder RE, Stover DB, Brown ALP, Butnor JR, Dilustro J, Hungate BA, Dijkstra P, Duval BD, Seiler TJ, Drake BG and Hinkle CR (2013) The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem. New Phytologist 200, 778-787. http://dx.doi.org/10.1111/nph.12246

Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT and von Caemmerer S (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytologist 197, 1077-1094. http://dx.doi.org/10.1111/nph.12104

Hungate BA, Day FP, Dijkstra P, Duval BD, Hinkle CR, Langley JA, Megonigal JP, Stiling P, Johnson DW and Drake BG (2013) Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland. New Phytologist 200, 767-777. http://dx.doi.org/10.1111/nph.12409

Novak M, Jacobson Jr GL, Norton SA, Stepanova M, Grimm EC, Jackova I and Buzek F (2013) Sulfur isotope evidence for changing input of continental and marine aerosols in a 60,000-year sediment core from Lake Tulane, central Florida, USA. Chemical Geology 349–350, 110-116. http://www.sciencedirect.com/science/article/pii/S0009254113001514

Ogutu BO, Dash J and Dawson TP (2013) Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data. Global Change Biology 19, 2878-2892. http://dx.doi.org/10.1111/gcb.12261

Rajkumar M, Prasad MNV, Swaminathan S and Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environment International 53, 74-86. http://www.sciencedirect.com/science/article/pii/S0160412012002644

Stiling P, Moon D, Rossi A, Forkner R, Hungate BA, Day FP, Schroeder RE and Drake B (2013) Direct and legacy effects of long-term elevated CO2 on fine root growth and plant–insect interactions. New Phytologist 200, 788-795. http://dx.doi.org/10.1111/nph.12295

Alexis MA, Rasse DP, Knicker H, Anquetil C and Rumpel C (2012) Evolution of soil organic matter after prescribed fire: A 20-year chronosequence. Geoderma 189–190, 98-107. http://www.sciencedirect.com/science/article/pii/S0016706112001942

de Oliveira EAD, Approbato AU, Legracie Jr JR and Martinez CA (2012) Soil-nutrient availability modifies the response of young pioneer and late successional trees to elevated carbon dioxide in a Brazilian tropical environment. Environmental and Experimental Botany 77, 53-62. http://www.sciencedirect.com/science/article/pii/S009884721100267X

Frost CJ, Dean JM, Smyers EC, Mescher MC, Carlson JE, De Moraes CM and Tooker JF (2012) A petiole-galling insect herbivore decelerates leaf lamina litter decomposition rates. Functional Ecology 26, 628-636. http://dx.doi.org/10.1111/j.1365-2435.2012.01986.x

Saha S, Sehgal VK, Nagarajan S and Pal M (2012) Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agricultural and Forest Meteorology 158–159, 63-70. http://www.sciencedirect.com/science/article/pii/S0168192312000548

 

 

References 1901-2013 (and links to abstracts):
[Number of papers mentioning Quercus myrtifolia: 165; Any undated papers have been included at the end]

 

Alexis MA, Rasse DP, Knicker H, Anquetil C and Rumpel C (2012) Evolution of soil organic matter after prescribed fire: A 20-year chronosequence. Geoderma 189–190, 98-107. http://www.sciencedirect.com/science/article/pii/S0016706112001942

de Oliveira EAD, Approbato AU, Legracie Jr JR and Martinez CA (2012) Soil-nutrient availability modifies the response of young pioneer and late successional trees to elevated carbon dioxide in a Brazilian tropical environment. Environmental and Experimental Botany 77, 53-62. http://www.sciencedirect.com/science/article/pii/S009884721100267X

Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR and Kuske CR (2012) Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology 14, 1145-58. http://dx.doi.org/10.1111/j.1462-2920.2011.02695.x

Frost CJ, Dean JM, Smyers EC, Mescher MC, Carlson JE, De Moraes CM and Tooker JF (2012) A petiole-galling insect herbivore decelerates leaf lamina litter decomposition rates. Functional Ecology 26, 628-36. http://dx.doi.org/10.1111/j.1365-2435.2012.01986.x

Saha S, Sehgal VK, Nagarajan S and Pal M (2012) Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agricultural and Forest Meteorology 158–159, 63-70. http://www.sciencedirect.com/science/article/pii/S0168192312000548

Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H and van der Linden L (2011) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology 168, 1550-61. http://www.sciencedirect.com/science/article/pii/S0176161711001507

Albritton R and Stein TV (2011) Integrating social and natural resource information to improve planning for motorized recreation. Applied Geography 31, 85-97. http://www.sciencedirect.com/science/article/pii/S0143622810000251

Edwards IP and Zak DR (2011) Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Global Change Biology 17, 2184-95. http://dx.doi.org/10.1111/j.1365-2486.2010.02376.x

Freeman J and Kobziar L (2011) Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecol Appl 21, 61-74.

Gagen M, Finsinger W, Wagner-Cremer F, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Young G and Kirchhefer A (2011) Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios. Global Change Biology 17, 1064-72. http://dx.doi.org/10.1111/j.1365-2486.2010.02273.x

Hannah L (2011) Chapter 10 - Insights from Experimentation. In ‘Climate Change Biology’. (Ed.^(Eds  pp. 209-31. (Academic Press: London). http://www.sciencedirect.com/science/article/pii/B9780123741820000108

Kirchoff BK, Leggett R, Her V, Moua C, Morrison J and Poole C (2011) Principles of visual key construction-with a visual identification key to the Fagaceae of the southeastern United States. AoB Plants 2011, plr005-. http://aobpla.oxfordjournals.org/cgi/content/abstract/2011/0/plr005

Menges ES, Weekley CW, Clarke GL and Smith SA (2011) Effects of Hurricanes on Rare Plant Demography in Fire-Controlled Ecosystems. Biotropica 43, 450-8. http://dx.doi.org/10.1111/j.1744-7429.2010.00728.x

Onandia G, Olsson A-K, Barth S, King JS and Uddling J (2011) Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environmental Pollution 159, 2350-4. http://www.sciencedirect.com/science/article/pii/S0269749111003265

Vannette RL and Hunter MD (2011) Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Global Change Biology 17, 1277-88. http://dx.doi.org/10.1111/j.1365-2486.2010.02316.x

Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, Schadt CW, Megonigal JP and Kuske CR (2011) Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems. Environmental Microbiology 13, 2778-93. http://dx.doi.org/10.1111/j.1462-2920.2011.02548.x

Weekley CW, Menges ES, Berry-Greenlee D, Rickey MA, Clarke GL and Smith SA (2011) Burning more effective than mowing in restoring Florida scrub. Ecological Rest. 29, 357-73. http://er.uwpress.org/cgi/content/abstract/29/4/357

Alexis MA, Rumpel C, Knicker H, Leifeld J, Rasse D, Péchot N, Bardoux G and Mariotti A (2010) Thermal alteration of organic matter during a shrubland fire: A field study. Organic Geochemistry 41, 690-7. http://www.sciencedirect.com/science/article/pii/S0146638010000598

David J-F and Handa IT (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews 85, 881-95. http://dx.doi.org/10.1111/j.1469-185X.2010.00138.x

Dieleman WIJ, Luyssaert S, Rey A, De Angelis P, Barton CVM, Broadmeadow MSJ, Broadmeadow SB, Chigwerewe KS, Crookshanks M, DufrÊNe E, Jarvis PG, Kasurinen A, KellomÄKi S, Le Dantec V, Liberloo M, Marek M, Medlyn B, PokornÝ R, Scarascia-Mugnozza G, Temperton VM, Tingey D, Urban O, Ceulemans R and Janssens IA (2010) Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Plant, Cell & Environment 33, 2001-11. http://dx.doi.org/10.1111/j.1365-3040.2010.02201.x

Ghannoum O, Phillips NG, Conroy JP, Smith RA, Attard RD, Woodfield R, Logan BA, Lewis JD and Tissue DT (2010) Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16, 303-19. http://dx.doi.org/10.1111/j.1365-2486.2009.02003.x

Ghannoum O, Phillips NG, Sears MA, Logan BA, Lewis JD, Conroy JP and Tissue DT (2010) Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant, Cell & Environment 33, 1671-81. http://dx.doi.org/10.1111/j.1365-3040.2010.02172.x

Li J, Erickson JE, Peresta G and Drake BG (2010) Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment. Global Change Biology 16, 234-45. http://dx.doi.org/10.1111/j.1365-2486.2009.01941.x

Pinkard EA, Beadle CL, Mendham DS, Carter J and Glen M (2010) Determining photosynthetic responses of forest species to elevated [CO2]: Alternatives to FACE. Forest Ecology and Management 260, 1251-61. http://www.sciencedirect.com/science/article/pii/S0378112710004020

Schädel C, Richter A, Blöchl A and Hoch G (2010) Hemicellulose concentration and composition in plant cell walls under extreme carbon source–sink imbalances. Physiologia Plantarum 139, 241-55. http://dx.doi.org/10.1111/j.1399-3054.2010.01360.x

Stiling P, Forkner R and Drake B (2010) Long-term exposure to elevated CO2 in a Florida scrub-oak forest increases herbivore densities but has no effect on other arthropod guilds. Insect Conservation and Diversity 3, 152-6. http://dx.doi.org/10.1111/j.1752-4598.2010.00080.x

Tallis MJ, Lin Y, Rogers A, Zhang J, Street NR, Miglietta F, Karnosky DF, De Angelis P, Calfapietra C and Taylor G (2010) The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytologist 186, 415-28. http://dx.doi.org/10.1111/j.1469-8137.2010.03184.x

Zheng JQ, Han SJ, Wang Y, Zhang CG and Li MH (2010) Composition and function of microbial communities during the early decomposition stages of foliar litter exposed to elevated CO2 concentrations. European Journal of Soil Science 61, 914-25. http://dx.doi.org/10.1111/j.1365-2389.2010.01280.x

Cornelissen T and Stiling P (2009) Spatial, bottom-up, and top-down effects on the abundance of a leaf miner. Ecography 32, 459-67. http://dx.doi.org/10.1111/j.1600-0587.2008.05590.x

Krumins JA, Dighton J, Gray D, Franklin RB, Morin PJ and Roberts MS (2009) Soil microbial community response to nitrogen enrichment in two scrub oak forests. Forest Ecology and Management 258, 1383-90. http://www.sciencedirect.com/science/article/pii/S0378112709004605

Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG and Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biology and Biochemistry 41, 54-60. http://www.sciencedirect.com/science/article/pii/S0038071708003246

McKinley DC, Romero JC, Hungate BA, Drake BG and Megonigal JP (2009) Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Global Change Biology 15, 2035-48. http://dx.doi.org/10.1111/j.1365-2486.2008.01836.x

Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR and Drake BG (2009) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biology 15, 356-67. http://dx.doi.org/10.1111/j.1365-2486.2008.01740.x

Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR and Drake BG (2009) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of COâ” enrichment in a Florida scrub-oak ecosystem. Global change biology. 15, 356-67. http://dx.doi.org/10.1111/j.1365-2486.2008.01740.x

Stiling P, Moon D, Rossi A, Hungate BA and Drake B (2009) Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities. Global Change Biology 15, 1895-902. http://dx.doi.org/10.1111/j.1365-2486.2009.01902.x

Stiling P, Moon D, Rossi A, Hungate BA and Drake B (2009) Seeing the forest for the trees: long-term exposure to elevated COâ” increases some herbivore densities. Global change biology. 15, 1895-902. http://dx.doi.org/10.1111/j.1365-2486.2009.01902.x

Suazo AA, Fauth JE, Roth JD, Parkinson CL and Stout IJ (2009) Responses of small rodents to habitat restoration and management for the imperiled Florida Scrub-Jay. Biological Conservation 142, 2322-8. http://www.sciencedirect.com/science/article/pii/S0006320709002274

Bidart-Bouzat MG and Imeh-Nathaniel A (2008) Global Change Effects on Plant Chemical Defenses against Insect Herbivores. Journal of Integrative Plant Biology 50, 1339-54. http://dx.doi.org/10.1111/j.1744-7909.2008.00751.x

Eguchi N, Morii N, Ueda T, Funada R, Takagi K, Hiura T, Sasa K and Koike T (2008) Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a CO2-enriched atmosphere. Tree Physiol 28, 287-95. http://treephys.oxfordjournals.org/cgi/content/abstract/28/2/287

Frost CJ and Hunter MD (2008) Insect herbivores and their frass affect Quercus rubra leaf quality and initial stages of subsequent litter decomposition. Oikos 117, 13-22. http://dx.doi.org/10.1111/j.2007.0030-1299.16165.x

Haring DA, Huber MJ, Suter D, Edwards PJ and Luscher A (2008) Plant Enemy-derived Elicitors Increase the Foliar Tannin Concentration of Onobrychis viciifolia Without a Trade-off to Growth. Ann. Bot. 102, 979-87. http://aob.oxfordjournals.org/cgi/content/abstract/102/6/979

Himanen SJ, Nissinen A, Dong W-X, Nerg A-M, Stewart CN, Poppy GM and Holopainen JK (2008) Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Global Change Biology 14, 1437-54. http://dx.doi.org/10.1111/j.1365-2486.2008.01574.x

Lawson T, Lefebvre S, Baker NR, Morison JIL and Raines CA (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J. Exp. Bot. 59, 3609-19. http://jxb.oxfordjournals.org/cgi/content/abstract/59/13/3609

Mattson KDM and Putz FE (2008) Sand pine (Pinus clausa) seedling distribution and biomechanics in relation to microsite conditions and proximity to potential nurse plants. Forest Ecology and Management 255, 3778-82. http://www.sciencedirect.com/science/article/pii/S0378112708002508

Taylor G, Tallis MJ, Giardina CP, Percy KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME, Scarascia-Mugnozza GE, Kets K, Long SP and Karnosky DF (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology 14, 264-75. http://dx.doi.org/10.1111/j.1365-2486.2007.01473.x

Zhang Y, Duan B, Qiao Y, Wang K, Korpelainen H and Li C (2008) Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. Forest Ecology and Management 255, 1937-44. http://www.sciencedirect.com/science/article/pii/S0378112707009553

ÁCs Z, Melika G, PÉNzes Z, Pujade-Villar J and Stone GN (2007) The phylogenetic relationships between Dryocosmus, Chilaspis and allied genera of oak gallwasps (Hymenoptera, Cynipidae: Cynipini). Systematic Entomology 32, 70-80. http://dx.doi.org/10.1111/j.1365-3113.2006.00351.x

Del Pozo A, Pérez P, Gutiérrez D, Alonso A, Morcuende R and Martínez-Carrasco R (2007) Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany 59, 371-80. http://www.sciencedirect.com/science/article/pii/S009884720600058X

Kitao M, Lei TT, Koike T, Kayama M, Tobita H and Maruyama Y (2007) Interaction of drought and elevated CO2 concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability. Tree Physiol 27, 727-35. http://treephys.oxfordjournals.org/cgi/content/abstract/27/5/727

Lers A (2007) Environmental Regulation of Leaf Senescence. In ‘Annual Plant Reviews Volume 26: Senescence Processes in Plants’. (Ed.^(Eds  pp. 108-44. (Blackwell Publishing Ltd). http://dx.doi.org/10.1002/9780470988855.ch6

Li J, Powell TL, Seiler TJ, Johnson DP, Anderson HP, Bracho R, Hungate BA, Hinkle CR and Drake BG (2007) Impacts of Hurricane Frances on Florida scrub-oak ecosystem processes: defoliation, net CO2 exchange and interactions with elevated CO2. Global Change Biology 13, 1101-13. http://dx.doi.org/10.1111/j.1365-2486.2007.01358.x

McCarthy HR, Oren RAM, Finzi AC, Ellsworth DS, Kim H-S, Johnsen KH and Millar B (2007) Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology 13, 2479-97. http://dx.doi.org/10.1111/j.1365-2486.2007.01455.x

Osier TL and Jennings SM (2007) Variability in host-plant quality for the larvae of a polyphagous insect folivore in midseason: the impact of light on three deciduous sapling species. Entomologia Experimentalis et Applicata 123, 159-66. http://dx.doi.org/10.1111/j.1570-7458.2007.00534.x

Stiling P and Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology 13, 1823-42. http://dx.doi.org/10.1111/j.1365-2486.2007.01392.x

Wu G, Chen F-J, Ge F and Sun Y-C (2007) Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton. Journal of Integrative Plant Biology 49, 1361-9. http://dx.doi.org/10.1111/j.1744-7909.2007.00472_1.x

Anonymous (2006) Keyword index. Global Change Biology 12, 2472-7. http://dx.doi.org/10.1111/j.1365-2486.2006.01295.x

Anonymous (2006) Author index. Global Change Biology 12, 2459-71. http://dx.doi.org/10.1111/j.1365-2486.2006.01294.x

Anonymous (2006) Volume index. Global Change Biology 12, 2478-86. http://dx.doi.org/10.1111/j.1365-2486.2006.01296.x

Aranda X, Agustí C, Joffre R and Fleck I (2006) Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. Physiologia Plantarum 128, 302-12. http://dx.doi.org/10.1111/j.1399-3054.2006.00745.x

Breininger DR, Toland B, Oddy DM and Legare ML (2006) Landcover characterizations and Florida scrub-jay (Aphelocoma coerulescens) population dynamics. Biological Conservation 128, 169-81. http://www.sciencedirect.com/science/article/pii/S0006320705003873

Day FP, Stover DB, Pagel AL, Hungate BA, Dilustro JJ, Herbert BT, Drake BG and Hinkle CR (2006) Rapid root closure after fire limits fine root responses to elevated atmospheric CO2 in a scrub oak ecosystem in central Florida, USA. Global Change Biology 12, 1047-53. http://dx.doi.org/10.1111/j.1365-2486.2006.01148.x

Dermody O, Long SP and DeLucia EH (2006) How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytologist 169, 145-55. http://dx.doi.org/10.1111/j.1469-8137.2005.01565.x

Grimm EC, Watts WA, Jacobson Jr GL, Hansen BCS, Almquist HR and Dieffenbacher-Krall AC (2006) Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews 25, 2197-211. http://www.sciencedirect.com/science/article/pii/S027737910600165X

Hall MC, Stiling P, Moon DC, Drake BG and Hunter MD (2006) Elevated CO2 increases the long-term decomposition rate of Quercus myrtifolia leaf litter. Global Change Biology 12, 568-77. http://dx.doi.org/10.1111/j.1365-2486.2006.01119.x

Hall MC, Stiling P, Moon DC, Drake BG and Hunter MD (2006) Elevated COâ” increases the long-term decomposition rate of Quercus myrtifolia leaf litter. Global change biology. 12, 568-77. http://dx.doi.org/10.1111/j.1365-2486.2006.01119.x

Leakey ADB, Bernacchi CJ, Ort DR and Long SP (2006) Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell & Environment 29, 1794-800. http://dx.doi.org/10.1111/j.1365-3040.2006.01556.x

Moore DJP, Aref S, Ho RM, Pippen JS, Hamilton JG and De Lucia EH (2006) Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology 12, 1367-77. http://dx.doi.org/10.1111/j.1365-2486.2006.01189.x

Powell TL, Bracho R, Li J, Dore S, Hinkle CR and Drake BG (2006) Environmental controls over net ecosystem carbon exchange of scrub oak in central Florida. Agricultural and Forest Meteorology 141, 19-34. http://www.sciencedirect.com/science/article/pii/S0168192306002425

Rae AM, Ferris R, Tallis MJ and Taylor G (2006) Elucidating genomic regions determining enhanced leaf growth and delayed senescence in elevated CO2. Plant, Cell & Environment 29, 1730-41. http://dx.doi.org/10.1111/j.1365-3040.2006.01545.x

Anonymous (2005) Oak Trees. In ‘Van Nostrand’s Scientific Encyclopedia’. (Ed.^(Eds  pp. (John Wiley & Sons, Inc.). http://dx.doi.org/10.1002/0471743984.vse5183

Cotrufo MF, De Angelis P and Polle A (2005) Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology 11, 971-82. http://dx.doi.org/10.1111/j.1365-2486.2005.00958.x

Cotrufo MF, Drake B and Ehleringer JR (2005) Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope study. Soil biology & biochemistry. 37, 1105-12.

Del Pozo A, Pérez P, Morcuende R, Alonso A and Martínez-Carrasco R (2005) Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply in a Mediterranean environment. Plant Science 169, 908-16. http://www.sciencedirect.com/science/article/pii/S0168945205002153

Emmerson M, Bezemer M, Hunter MD and Jones TH (2005) Global change alters the stability of food webs. Global Change Biology 11, 490-501. http://dx.doi.org/10.1111/j.1365-2486.2005.00919.x

Francesca Cotrufo M, Drake B and Ehleringer JR (2005) Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope study. Soil Biology and Biochemistry 37, 1105-12. http://www.sciencedirect.com/science/article/pii/S0038071704004237

Hall MC, Stiling P, Hungate BA, Drake BG and Hunter MD (2005) Effects of elevated co2 and herbivore damage on litter quality in a scrub oak ecosystem. J Chem Ecol 31, 2343-56.

Hall MC, Stiling P, Moon DC, Drake BG and Hunter MD (2005) Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem. J Chem Ecol 31, 267-86.

Hall MC, Stiling P, Moon DC, Drake BG and Hunter MD (2005) Effects of elevated COâ” on foliar quality and herbivore damage in a scrub oak ecosystem. Journal of chemical ecology. 31, 267-86. http://www.kluweronline.com/issn/0098-0331/contents

Hodson MJ, White PJ, Mead A and Broadley MR (2005) Phylogenetic Variation in the Silicon Composition of Plants. Ann. Bot. 96, 1027-46. http://aob.oxfordjournals.org/cgi/content/abstract/96/6/1027

Kitao M, Koike T, Tobita H and Maruyama Y (2005) Elevated CO2 and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (Betula platyphylla var. japonica) leaves. Physiologia Plantarum 125, 64-73. http://dx.doi.org/10.1111/j.1399-3054.2005.00540.x

Lambreva M, Stoyanova-Koleva D, Baldjiev G and Tsonev T (2005) Early acclimation changes in the photosynthetic apparatus of bean plants during short-term exposure to elevated CO2 concentration under high temperature and light intensity. Agriculture, Ecosystems &amp; Environment 106, 219-32. http://www.sciencedirect.com/science/article/pii/S0167880904003007

Martínez-Carrasco R, Pérez P and Morcuende R (2005) Interactive effects of elevated CO2, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels. Environmental and Experimental Botany 54, 49-59. http://www.sciencedirect.com/science/article/pii/S0098847204000796

Zhang S and Dang Q-L (2005) Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Tree Physiol 25, 523-31. http://treephys.oxfordjournals.org/cgi/content/abstract/25/5/523

Anonymous (2004) Index. Global Change Biology 10, 2139-56. http://dx.doi.org/10.1111/j.1365-2486.2004.index.x

Barnard R, Barthes L, Le Roux X and Leadley PW (2004) Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2. New Phytologist 162, 365-76. http://dx.doi.org/10.1111/j.1469-8137.2004.01038.x

Cornelissen T, Stiling P and Drake B (2004) Elevated CO2 decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. Global Change Biology 10, 27-36. http://dx.doi.org/10.1111/j.1365-2486.2003.00712.x

Gonzalez-Meler MA, Taneva L and Trueman RJ (2004) Plant Respiration and Elevated Atmospheric CO2 Concentration: Cellular Responses and Global Significance. Ann. Bot. 94, 647-56. http://aob.oxfordjournals.org/cgi/content/abstract/94/5/647

Herrick JD, Maherali H and Thomas RB (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytologist 162, 387-96. http://dx.doi.org/10.1111/j.1469-8137.2004.01045.x

Lawson T and Morison JIL (2004) 12 - Stomatal function and physiology. In ‘The Evolution of Plant Physiology’. (Ed.^(Eds Alan RH and Imogen P) pp. 217-42. (Academic Press: Oxford). http://www.sciencedirect.com/science/article/pii/B9780123395528500135

Layne JN and Abrahamson WG (2004) Long-term trends in annual reproductive output of the scrub hickory: factors influencing variation in size of nut crop. Am. J. Botany 91, 1378-86. http://www.amjbot.org/cgi/content/abstract/91/9/1378

Price PW, Abrahamson WG, Hunter MD and Melika G (2004) Using Gall Wasps on Oaks to Test Broad Ecological Concepts

Utilización de Avispas en Robles para Probar Conceptos Ecológicos Generales. Conservation Biology 18, 1405-16. http://dx.doi.org/10.1111/j.1523-1739.2004.00547.x

Reinhart KO and Menges ES (2004) Effects of re-introducing fire to a central Florida sandhill community. Applied Vegetation Science 7, 141-50. http://dx.doi.org/10.1111/j.1654-109X.2004.tb00604.x

Rossi AM, Stiling P, Moon DC, Cattell MV and Drake BG (2004) Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. J Chem Ecol 30, 1143-52.

Stiling P, Moon D, Hymus G and Drake B (2004) Differential effects of elevated CO2 on acorn density, weight, germination, and predation among three oak species in a scrub-oak forest. Global Change Biology 10, 228-32. http://dx.doi.org/10.1111/j.1365-2486.2004.00728.x

Yahr R, Vilgalys R and Depriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13, 3367-78. http://dx.doi.org/10.1111/j.1365-294X.2004.02350.x

Anonymous (2003) Indices to Volume 9. Global Change Biology 9, 1825-38. http://dx.doi.org/10.1111/j.1365-2486.2003.index.x

Anonymous (2003) Keyword Index. Molecular Ecology 12, 3547-53. http://dx.doi.org/10.1046/j.1365-294X.2003.02018.x

Abrahamson WG, Hunter MD, Melika G and Price PW (2003) Cynipid gall-wasp communities correlate with oak chemistry. J Chem Ecol 29, 209-23.

Ainsworth EA, Tranel PJ, Drake BG and Long SP (2003) The clonal structure of Quercus geminata revealed by conserved microsatellite loci. Molecular Ecology 12, 527-32. http://dx.doi.org/10.1046/j.1365-294X.2003.01749.x

Breuer L, Eckhardt K and Frede H-G (2003) Plant parameter values for models in temperate climates. Ecological Modelling 169, 237-93. http://www.sciencedirect.com/science/article/pii/S0304380003002746

Dore S, Hymus GJ, Johnson DP, Hinkle CR, Valentini R and Drake BG (2003) Cross validation of open-top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub-oak ecosystem. Global Change Biology 9, 84-95. http://dx.doi.org/10.1046/j.1365-2486.2003.00561.x

Gesch RW, Kang IH, Gallo-Meagher M, Vu JCV, Boote KJ, H. Allen L and Bowes G (2003) Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO2 and temperature. Plant, Cell & Environment 26, 1941-50. http://dx.doi.org/10.1046/j.1365-3040.2003.01110.x

Herrick JD and Thomas RB (2003) Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Tree Physiol 23, 109-18. http://treephys.oxfordjournals.org/cgi/content/abstract/23/2/109

Hymus GJ, Johnson DP, Dore S, Anderson HP, Ross Hinkle C and Drake BG (2003) Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub–oak ecosystem. Global Change Biology 9, 1802-12. http://dx.doi.org/10.1111/j.1365-2486.2003.00675.x

Johns CV, Beaumont LJ and Hughes L (2003) Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara. Entomologia Experimentalis et Applicata 108, 169-78. http://dx.doi.org/10.1046/j.1570-7458.2003.00076.x

Lawson T, Oxborough K, Morison JIL and Baker NR (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J. Exp. Bot. 54, 1743-52. http://jxb.oxfordjournals.org/cgi/content/abstract/54/388/1743

Lewis BA, Wrenn JH, Lewis AJ, Alford JJ and Alford D (2003) Middle Wisconsinan and recent wet site mummified wood, humus, peat, and pollen, Santa Rosa Island, Florida. Review of Palaeobotany and Palynology 126, 243-66. http://www.sciencedirect.com/science/article/pii/S0034666703000903

Li JH, Dugas WA, Hymus GJ, Johnson DP, Hinkle CR, Drake BG and Hungate BA (2003) Direct and indirect effects of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystem. Global Change Biology 9, 96-105. http://dx.doi.org/10.1046/j.1365-2486.2003.00557.x

Naumburg E, Housman DC, Huxman TE, Charlet TN, Loik ME and Smith SD (2003) Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Global Change Biology 9, 276-85. http://dx.doi.org/10.1046/j.1365-2486.2003.00580.x

Stiling P, Moon DC, Hunter MD, Colson J, Rossi AM, Hymus GJ and Drake BG (2003) Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia 134, 82-7.

Volin JC, Kruger EL and Lindroth RL (2003) Notes & Abstracts

Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Ecological Rest. 21, 311-45. http://er.uwpress.org

http://treephys.oxfordjournals.org/cgi/content/abstract/22/7/435

W.H.O E (2003) Chapter 12 The use of higher plants as bioindicators. In ‘Trace Metals and other Contaminants in the Environment’. (Ed.^(Eds B.A. Markert AMB and Zechmeister HG) pp. 423-63. (Elsevier). http://www.sciencedirect.com/science/article/pii/S092752150380142X

Anonymous (2002) Keyword index. Global Change Biology 8, 1275-7. http://dx.doi.org/10.1111/j.1365-2486.2002.keyword-index.x

Abrahamson WG and Layne JN (2002) Relation of ramet size to acorn production in five oak species of xeric upland habitats in south-central Florida. Am. J. Botany 89, 124-31. http://www.amjbot.org/cgi/content/abstract/89/1/124

Abrahamson WG and Layne JN (2002) Post-fire recovery of acorn production by four oak species in southern ridge sandhill association in south-central Florida. American journal of botany. 89, 119-23. http://www.amjbot.org/

Dijkstra P, Hymus G, Colavito D, Vieglais DA, Cundari CM, Johnson DP, Hungate BA, Hinkle CR and Drake BG (2002) Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem. Global Change Biology 8, 90-103. http://dx.doi.org/10.1046/j.1354-1013.2001.00458.x

Dilustro JJ, Day FP, Drake BG and Hinkle CR (2002) Abundance, production and mortality of fine roots under elevated atmospheric CO2 in an oak-scrub ecosystem. Environmental and Experimental Botany 48, 149-59. http://www.sciencedirect.com/science/article/pii/S0098847202000205

F Ian W (2002) Potential impacts of global elevated CO2 concentrations on plants. Current Opinion in Plant Biology 5, 207-11. http://www.sciencedirect.com/science/article/pii/S1369526602002534

Hungate BA, Reichstein M, Dijkstra P, Johnson D, Hymus G, Tenhunen JD, Hinkle CR and Drake BG (2002) Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biology 8, 289-98. http://dx.doi.org/10.1046/j.1365-2486.2002.00468.x

Hymus GJ, Pontailler J-Y, Li J, Stiling P, Hinkle CR and Drake BG (2002) Seasonal variability in the effect of elevated CO2 on ecosystem leaf area index in a scrub-oak ecosystem. Global Change Biology 8, 931-40. http://dx.doi.org/10.1046/j.1365-2486.2002.00526.x

Hymus GJ, Snead TG, Johnson DP, Hungate BA and Drake BG (2002) Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks. Global Change Biology 8, 317-28. http://dx.doi.org/10.1046/j.1354-1013.2001.00472.x

Klamer M, Roberts MS, Levine LH, Drake BG and Garland JL (2002) Influence of Elevated CO2 on the Fungal Community in a Coastal Scrub Oak Forest Soil Investigated with Terminal-Restriction Fragment Length Polymorphism Analysis. Appl. Envir. Microbiol. 68, 4370-6. http://aem.asm.org/cgi/content/abstract/68/9/4370

Kubiske ME, Zak DR, Pregitzer KS and Takeuchi Y (2002) Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Tree Physiol 22, 321-9. http://treephys.oxfordjournals.org/cgi/content/abstract/22/5/321

Lawson T, Oxborough K, Morison JIL and Baker NR (2002) Responses of Photosynthetic Electron Transport in Stomatal Guard Cells and Mesophyll Cells in Intact Leaves to Light, CO2, and Humidity. Plant Physiology 128, 52-62. http://www.plantphysiol.org/cgi/content/abstract/128/1/52

Maherali H, Reid CD, Polley HW, Johnson HB and Jackson RB (2002) Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant, Cell & Environment 25, 557-66. http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x

Stiling P, Cattell M, Moon DC, Rossi A, Hungate BA, Hymus G and Drake B (2002) Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates. Global Change Biology 8, 658-67. http://dx.doi.org/10.1046/j.1365-2486.2002.00501.x

Volin JC, Kruger EL and Lindroth RL (2002) Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Tree Physiol 22, 435-48. http://treephys.oxfordjournals.org/cgi/content/abstract/22/7/435

Bauer GA, Berntson GM and Bazzaz FA (2001) Regenerating temperate forests under elevated CO2 and nitrogen deposition: comparing biochemical and stomatal limitation of photosynthesis. New Phytologist 152, 249-66. http://dx.doi.org/10.1046/j.0028-646X.2001.00255.x

Cavender-Bares J and Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell & Environment 24, 1243-56. http://dx.doi.org/10.1046/j.1365-3040.2001.00797.x

Dilustro JJ, Day FP and Drake BG (2001) Effects of elevated atmospheric CO2 on root decomposition in a scrub oak ecosystem. Global Change Biology 7, 581-9. http://dx.doi.org/10.1046/j.1354-1013.2001.00428.x

Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agricultural and Forest Entomology 3, 153-9. http://dx.doi.org/10.1046/j.1461-9555.2001.00108.x

Hymus GJ, Dijkstra P, Baker NR, Drake BG and Long SP (2001) Will rising CO2 protect plants from the midday sun? A study of photoinhibition of Quercus myrtifolia in a scrub-oak community in two seasons. Plant, Cell & Environment 24, 1361-8. http://dx.doi.org/10.1046/j.1365-3040.2001.00792.x

Lee TD, Tjoelker MG, Ellsworth DS and Reich PB (2001) Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist 150, 405-18. http://dx.doi.org/10.1046/j.1469-8137.2001.00095.x

Lodge RJ, Dijkstra P, Drake BG and Morison JIL (2001) Stomatal acclimation to increased CO2 concentration in a Florida scrub oak species Quercus myrtifolia Willd. Plant, Cell & Environment 24, 77-88. http://dx.doi.org/10.1046/j.1365-3040.2001.00659.x

Morison JIL (2001) Increasing atmospheric CO2 and stomata. New Phytologist 149, 154-6. http://dx.doi.org/10.1046/j.1469-8137.2001.00042.x

Noormets A, Sôber A, Pell EJ, Dickson RE, Podila GK, Sôber J, Isebrands JG and Karnosky DF (2001) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant, Cell & Environment 24, 327-36. http://dx.doi.org/10.1046/j.1365-3040.2001.00678.x

Rogers A, Ellsworth DS and Humphries SW (2001) Possible explanation of the disparity between the in vitro and in vivo measurements of Rubisco activity: a study in loblolly pine grown in elevated pCO2. J. Exp. Bot. 52, 1555-61. http://jxb.oxfordjournals.org/cgi/content/abstract/52/360/1555

Brockway DG and Outcalt KW (2000) Restoring longleaf pine wiregrass ecosystems:: Hexazinone application enhances effects of prescribed fire. Forest Ecology and Management 137, 121-38. http://www.sciencedirect.com/science/article/pii/S0378112799003217

Drake JB and Weishampel JF (2000) Multifractal analysis of canopy height measures in a longleaf pine savanna. Forest Ecology and Management 128, 121-7. http://www.sciencedirect.com/science/article/pii/S0378112799002790

Li JH, Dijkstra P, Hymus GJ, Wheeler RM, Piastuch WC, Hinkle CR and Drake BG (2000) Leaf senescence of Quercus myrtifolia as affected by long-term CO2 enrichment in its native environment. Global Change Biology 6, 727-33. http://dx.doi.org/10.1046/j.1365-2486.2000.00347.x

Provencher L, Herring BJ, Gordon DR, Rodgers HL, Tanner GW, Brennan LA and Hardesty JL (2000) Restoration of Northwest Florida Sandhills Through Harvest of Invasive Pinus clausa. Restoration Ecology 8, 175-85. http://dx.doi.org/10.1046/j.1526-100x.2000.80025.x

Rogers A and Humphries SW (2000) A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Global Change Biology 6, 1005-11. http://dx.doi.org/10.1046/j.1365-2486.2000.00375.x

Schortemeyer M, Dijkstra P, Johnson DW and Drake BG (2000) Effects of elevated atmospheric CO2 concentration on C and N pools and rhizosphere processes in a Florida scrub oak community. Global Change Biology 6, 383-91. http://dx.doi.org/10.1046/j.1365-2486.2000.00317.x

Anonymous (1999) Keyword index. Tree Physiol 19, 963-8. http://treephys.oxfordjournals.org

Carrington ME (1999) Post-fire seedling establishment in Florida sand pine scrub. Journal of Vegetation Science 10, 403-12. http://dx.doi.org/10.2307/3237069

Dijkstra P, Schapendonk AHMC, Groenwold KO, Jansen M and Van De Geijn SC (1999) Seasonal changes in the response of winter wheat to elevated atmospheric CO2 concentration grown in Open-Top Chambers and field tracking enclosures. Global Change Biology 5, 563-76. http://dx.doi.org/10.1046/j.1365-2486.1999.00249.x

Hungate BA, Dijkstra P, Johnson DW, Hinkle CR and Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5, 781-9. http://dx.doi.org/10.1046/j.1365-2486.1999.00275.x

Li JH, Dijkstra P, Hinkle CR, Wheeler RM and Drake BG (1999) Photosynthetic acclimation to elevated atmospheric CO2 concentration in the Florida scrub-oak species Quercus geminata and Quercus myrtifolia growing in their native environment. Tree Physiol 19, 229-34. http://treephys.oxfordjournals.org/cgi/content/abstract/19/4-5/229

Li JH, Dijkstra P, Hinkle CR, Wheeler RM and Drake BG (1999) Photosynthetic acclimation to elevated atmospheric CO2 concentration in Florida scrub-oak species Quercus geminata and Quercus myrtifolia growing in their native environment. Tree physiology. 19, 229-34.

Li J-H, Dijkstra P, Hinkle CR, Wheeler RM and Drake BG (1999) Photosynthetic acclimation to elevated atmospheric CO2 concentration in the Florida scrub-oak species Quercus geminata and Quercus myrtifolia growing in their native environment. Tree Physiol 19, 229-34. http://treephys.oxfordjournals.org/cgi/content/abstract/19/4-5/229

Stiling P, Rossi AM, Hungate B, Dijkstra P, Hinkle CR, Knott WM, III and Drake B (1999) Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecological applications : a publication of the Ecological Society of America. 9, 240-4.

Anonymous (1998) OTHER COMMUNITIES. Ecological Rest. 16, 95-8. http://er.uwpress.org

Brockway DG, Outcalt KW and Wilkins RN (1998) Restoring longleaf pine wiregrass ecosystems: plant cover, diversity and biomass following low-rate hexazinone application on Florida sandhills. Forest Ecology and Management 103, 159-75. http://www.sciencedirect.com/science/article/pii/S0378112797001862

Brockway DG and W. Outcalt K (1998) Gap-phase regeneration in longleaf pine wiregrass ecosystems. Forest Ecology and Management 106, 125-39. http://www.sciencedirect.com/science/article/pii/S0378112797003083

Benjamin MT, Sudol M, Bloch L and Winer AM (1996) Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rates. Atmospheric Environment 30, 1437-52. http://www.sciencedirect.com/science/article/pii/1352231095004394

Greenberg CH and McGrane A (1996) A comparison of relative abundance and biomass of ground-dwelling arthropods under different forest management practices. Forest Ecology and Management 89, 31-41. http://www.sciencedirect.com/science/article/pii/S0378112796038686

Mopper S, Beck M, Simberloff D and Stiling P (1995) Local adaptation and agents of selection in a mobile insect. Evolution. 49, 810-5.

Watts WA (1995) OTHER COMMUNITIES

A Pollen Diagram from Mud Lake, Marion County, North-Central Florida. Ecological Rest. 13, 124-8. http://er.uwpress.org

http://gsabulletin.gsapubs.org/cgi/content/abstract/80/4/631

Greenberg CH, Neary DG and Harris LD (1994) Effect of High-Intensity Wildfire and Silvicultural Treatments on Reptile Communities in Sand-Pine Scrub

Efecto de los incendios naturales de alta intensidad y de los tratamientos de silvicultura sobre las comunidades de reptiles en un brozal de ambiente arenoso. Conservation Biology 8, 1047-57. http://dx.doi.org/10.1046/j.1523-1739.1994.08041047.x

Menges ES, Abrahamson WG, Givens KT, Gallo NP and Layne JN (1993) Twenty years of vegetation change in five long-unburned Florida plant communities. Journal of Vegetation Science 4, 375-86. http://dx.doi.org/10.2307/3235596

Wilkins RN, Tanner GT, Mulholland R and Neary DG (1993) Use of hexazinone for understory restoration of a successionally-advanced xeric sandhill in Florida. Ecological Engineering 2, 31-48. http://www.sciencedirect.com/science/article/pii/092585749390025B

Abrams MD and Menges ES (1992) Leaf ageing and plateau effects on seasonal pressure-volume relationships in three sclerophyllous Quercus species in south-eastern USA. Functional ecology., 3.

McCoy ED and Mushinsky HR (1992) Rarity of Organisms in the Sand Pine Scrub Habitat of Florida

Rareza de los organismos en un hábitat arenoso de pinares enanos en La Florida. Conservation Biology 6, 537-48. http://dx.doi.org/10.1046/j.1523-1739.1992.06040537.x

Layne JN (1967) Incidence of Porocephalus crotali (Pentastomida) in Florida Mammals. J. Wildl. Dis. 3, 105-9. http://www.jwildlifedis.org/cgi/content/abstract/3/3/105

Wall ME, Garvin JW, Willaman JJ, Jones Q and Schubert BG (1961) Steroidal sapogenins LX. Survey of plants for steroidal sapogenins and other constituents. Journal of Pharmaceutical Sciences 50, 1001-34. http://dx.doi.org/10.1002/jps.2600501204

Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H and van der Linden L Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology 168, 1550-61. http://www.sciencedirect.com/science/article/pii/S0176161711001507

Albritton R and Stein TV Integrating social and natural resource information to improve planning for motorized recreation. Applied Geography 31, 85-97. http://www.sciencedirect.com/science/article/pii/S0143622810000251

Alexis MA, Rasse DP, Knicker H, Anquetil C and Rumpel C Evolution of soil organic matter after prescribed fire: A 20-year chronosequence. Geoderma 189–190, 98-107. http://www.sciencedirect.com/science/article/pii/S0016706112001942

Alexis MA, Rumpel C, Knicker H, Leifeld J, Rasse D, PÉchot N, Bardoux G and Mariotti A Thermal alteration of organic matter during a shrubland fire: A field study. Organic Geochemistry 41, 690-7. http://www.sciencedirect.com/science/article/pii/S0146638010000598

Cornelissen T and Stiling P Small variations over large scales: fluctuating asymmetry over the range of two oak species. International journal of plant sciences. 171, 303-9.

David J-F and Handa IT The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews 85, 881-95. http://dx.doi.org/10.1111/j.1469-185X.2010.00138.x

de Oliveira EAD, Approbato AU, Legracie Jr JR and Martinez CA Soil-nutrient availability modifies the response of young pioneer and late successional trees to elevated carbon dioxide in a Brazilian tropical environment. Environmental and Experimental Botany 77, 53-62. http://www.sciencedirect.com/science/article/pii/S009884721100267X

Dieleman WIJ, Luyssaert S, Rey A, De Angelis P, Barton CVM, Broadmeadow MSJ, Broadmeadow SB, Chigwerewe KS, Crookshanks M, DufrÊNe E, Jarvis PG, Kasurinen A, KellomÄKi S, Le Dantec V, Liberloo M, Marek M, Medlyn B, PokornÝ R, Scarascia-Mugnozza G, Temperton VM, Tingey D, Urban O, Ceulemans R and Janssens IA Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Plant, Cell & Environment 33, 2001-11. http://dx.doi.org/10.1111/j.1365-3040.2010.02201.x

Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR and Kuske CR Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology 14, 1145-58. http://dx.doi.org/10.1111/j.1462-2920.2011.02695.x

Edwards IP and Zak DR Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Global Change Biology 17, 2184-95. http://dx.doi.org/10.1111/j.1365-2486.2010.02376.x

Freeman JE and Kobziar LN Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecol Appl 21, 61-74.

Frost CJ, Dean JM, Smyers EC, Mescher MC, Carlson JE, De Moraes CM and Tooker JF A petiole-galling insect herbivore decelerates leaf lamina litter decomposition rates. Functional Ecology, no-no. http://dx.doi.org/10.1111/j.1365-2435.2012.01986.x

Gagen M, Finsinger W, Wagner-Cremer F, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Young G and Kirchhefer A Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios. Global Change Biology 17, 1064-72. http://dx.doi.org/10.1111/j.1365-2486.2010.02273.x

Ghannoum O, Phillips NG, Conroy JP, Smith RA, Attard RD, Woodfield R, Logan BA, Lewis JD and Tissue DT Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16, 303-19. http://dx.doi.org/10.1111/j.1365-2486.2009.02003.x

Ghannoum O, Phillips NG, Sears MA, Logan BA, Lewis JD, Conroy JP and Tissue DT Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant, Cell & Environment 33, 1671-81. http://dx.doi.org/10.1111/j.1365-3040.2010.02172.x

Hannah L Chapter 10 - Insights from Experimentation. In ‘Climate Change Biology’. (Ed.^(Eds  pp. 209-31. (Academic Press: London). http://www.sciencedirect.com/science/article/pii/B9780123741820000108

Kirchoff BK, Leggett R, Her V, Moua C, Morrison J and Poole C Principles of visual key construction-with a visual identification key to the Fagaceae of the southeastern United States. AoB Plants 2011, plr005-. http://aobpla.oxfordjournals.org/cgi/content/abstract/2011/0/plr005

Layne JN and Abrahamson WG Spatiotemporal variation of fruit digestible-nutrient production in Florida’s uplands. Acta Oecologica 36, 675-83. http://www.sciencedirect.com/science/article/pii/S1146609X10001153

Layne JN and Abrahamson WG Spatiotemporal variation of fruit digestible-nutrient production in Florida’s uplands. Acta Oecologica 36, 675-83. http://www.sciencedirect.com/science/article/pii/S1146609X10001153

Li J, Erickson JE, Peresta G and Drake BG Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment. Global Change Biology 16, 234-45. http://dx.doi.org/10.1111/j.1365-2486.2009.01941.x

Menges ES, Weekley CW, Clarke GL and Smith SA Effects of Hurricanes on Rare Plant Demography in Fire-Controlled Ecosystems. Biotropica 43, 450-8. http://dx.doi.org/10.1111/j.1744-7429.2010.00728.x

Onandia G, Olsson A-K, Barth S, King JS and Uddling J Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environmental Pollution 159, 2350-4. http://www.sciencedirect.com/science/article/pii/S0269749111003265

Pinkard EA, Beadle CL, Mendham DS, Carter J and Glen M Determining photosynthetic responses of forest species to elevated [CO2]: Alternatives to FACE. Forest Ecology and Management 260, 1251-61. http://www.sciencedirect.com/science/article/pii/S0378112710004020

Rajkumar M, Prasad MNV, Swaminathan S and Freitas H Climate change driven plant–metal–microbe interactions. Environment International 53, 74-86. http://www.sciencedirect.com/science/article/pii/S0160412012002644

Saha S, Sehgal VK, Nagarajan S and Pal M Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agricultural and Forest Meteorology 158–159, 63-70. http://www.sciencedirect.com/science/article/pii/S0168192312000548

Schädel C, Richter A, Blöchl A and Hoch G Hemicellulose concentration and composition in plant cell walls under extreme carbon source–sink imbalances. Physiologia Plantarum 139, 241-55. http://dx.doi.org/10.1111/j.1399-3054.2010.01360.x

Stiling P, Forkner R and Drake B Long-term exposure to elevated CO2 in a Florida scrub-oak forest increases herbivore densities but has no effect on other arthropod guilds. Insect Conservation and Diversity 3, 152-6. http://dx.doi.org/10.1111/j.1752-4598.2010.00080.x

Stover DB, Day FP, Drake BG and Hinkle CR The long-term effects of CO2 enrichment on fine root productivity, mortality, and survivorship in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. Environmental and Experimental Botany 69, 214-22. http://www.sciencedirect.com/science/article/pii/S0098847210000559

Tallis MJ, Lin Y, Rogers A, Zhang J, Street NR, Miglietta F, Karnosky DF, De Angelis P, Calfapietra C and Taylor G The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytologist 186, 415-28. http://dx.doi.org/10.1111/j.1469-8137.2010.03184.x

Vannette RL and Hunter MD Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Global Change Biology 17, 1277-88. http://dx.doi.org/10.1111/j.1365-2486.2010.02316.x

Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, Schadt CW, Megonigal JP and Kuske CR Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems. Environmental Microbiology 13, 2778-93. http://dx.doi.org/10.1111/j.1462-2920.2011.02548.x

Weekley CW, Menges ES, Berry-Greenlee D, Rickey MA, Clarke GL and Smith SA Burning more effective than mowing in restoring Florida scrub. Ecological Rest. 29, 357-73. http://er.uwpress.org/cgi/content/abstract/29/4/357

Zheng JQ, Han SJ, Wang Y, Zhang CG and Li MH Composition and function of microbial communities during the early decomposition stages of foliar litter exposed to elevated CO2 concentrations. European Journal of Soil Science 61, 914-25. http://dx.doi.org/10.1111/j.1365-2389.2010.01280.x

 


RIRDC Farm Diversity Website: http://www.farmdiversity.com.au/

 

Rural Industries Research and Development Corporation (RIRDC)
Home Page

RIRDC New and Developing Plant Industries
Home Page

includes publications and project reports

RIRDC New Crop Industries Handbook
530 pages
as pdf download


RIRDC
essential oils, tea tree oil, wildflowers and natives, bioenergy, organic farming


Grateful acknowledgment is made to the following: for plant names: Australian Plant Name Index, Australian National Herbarium http://www.anbg.gov.au/cpbr/databases/apni-search-full.html; ; The International Plant Names Index, Royal Botanic Gardens, Kew/Harvard University Herbaria/Australian National Herbarium http://www.ipni.org/index.html; Plants Database, United States Department of Agriculture, National Resources Conservation Service http://plants.usda.gov/;DJ Mabberley (1997) The Plant Book, Cambridge University Press (Second Edition); JH Wiersma and B Leon (1999) World Economic Plants, CRC Press; RJ Hnatiuk (1990) Census of Australian Vascular Plants, Australian Government Publishing Service; for information: Science Direct http://www.sciencedirect.com/; Wiley Online Library http://onlinelibrary.wiley.com/advanced/search; High Wire http://highwire.stanford.edu/cgi/search; Oxford Journals http://services.oxfordjournals.org/search.dtl; USDA National Agricultural Library http://agricola.nal.usda.gov/booleancube/booleancube_search_cit.html; for synonyms: The Plant List http://www.theplantlist.org/; for common names: http://en.wikipedia.org/wiki/Main_Page; etc.


All information is included in good faith but this website does not warrant or guarantee the accuracy of any information on these pages, nor does the website accept responsibility for any loss arising from the use of this information.  Views and opinions are those of the authors themselves.  Every effort has been made to respect copyright owners' rights. 


Contact: Webmaster, Australian New Crops Website
australiannewcrops@gmail.com
Latest update March 2017 by: ANCW